Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) * Vì ABCD là hình bình hành(gt)
=> \(\widehat{A}=\widehat{C}\); \(\widehat{B}=\widehat{D};AD=BC;AB//CD\)( tính chất)
_ Ta có AM là tia phân giác của GÓC A => \(\widehat{A_1}=\widehat{A_2}=\frac{\widehat{A}}{2}\left(1\right)\)
_Ta có CN là tia phân giác của GÓC C =>\(\widehat{C_1}=\widehat{C_2}=\frac{\widehat{C}}{2}\left(2\right)\)
_ Từ (1) (2) => \(\widehat{A_1}=\widehat{C_2}\)
* Xét \(\Delta ADM\) và \(\Delta CBN\)có:
\(\widehat{A_1}=\widehat{C_2}\)( cmt)
AD=BC( cmt)
GÓC B=GÓC D
=> \(\Delta ADM=\Delta CBN\left(g.c.g\right)\)
=>AM=CN (3) ( 2 cạnh tuiwng ứng)
\(\widehat{M_1}=\widehat{N_1}\) ( 2 góc tương ứng)
* Mà AB//CD( gt)
\(N\in AB;M\in CD\left(gt\right)\)
=>BN//CM => \(\widehat{N_1}=\widehat{C_1}\)( 2 góc SLT)
=> \(\widehat{M_1}=\widehat{C_1}\)
Mà 2 góc này ở vị trí Đồng vị
=> AM//CN(4)
* Từ (3)(4)
=> AMCN là hình bình hành
_ Cậu tự vẽ hình xong đặt chỉ số ạ_
_tham khảo bài àm trên đây ạ, chúc cậu học tốt '.'

1)
A B C D E F
Ta có:
* AB // CD (ABCD là hình bình hành (gt))
\(\Rightarrow\) AE // FC (1)
* Ta có: E là trung điểm AB (gt)
\(\Rightarrow\) EA = EB
F là trung điểm DC (gt)
\(\Rightarrow\) FD = FC
mà AB = DC
\(\Rightarrow\) AE = FC (2)
Từ (1)(2) \(\Rightarrow\) AECF là bình bình hành (dhnb3)

DEBF có EB // DF ; EB = \(\frac{1}{2}\).AB = \(\frac{1}{2}\).DC = FC
=> DEBF là hình bình hành
A B C D E F M N 1 2 1 2
Vì AB = CD (định lý)
mà EA = EB = FD = FC
Ta có :
AB // CD (gt) => EB // DF
=> EBFD là hình bình hành
a: Ta có: \(AE=EB=\dfrac{AB}{2}\)
\(CF=DF=\dfrac{CD}{2}\)
mà AB=CD
nên AE=EB=CF=DF
Xét tứ giác AECF có
AE//CF
AE=CF
Do đó: AECF là hình bình hành
b: Xét tứ giác BEDF có
BE//DF
BE=DF
Do đó: BEDF là hình bình hành
=>BF//DE
Xét ΔABK có
E là trung điểm của AB
EI//KB
Do đó: I là trung điểm của AK
=>AI=IK
Xét ΔDIC có
F là trung điểm của DC
FK//DI
Do đó: K là trung điểm của IC
=>IK=KC
mà AI=IK
nên AI=IK=KC