\(A=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
19 tháng 5 2019

\(A=\frac{\sqrt{2}-1}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}+\frac{\sqrt{3}-\sqrt{2}}{\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)}+...+\frac{\sqrt{121}-\sqrt{120}}{\left(\sqrt{121}-\sqrt{120}\right)\left(\sqrt{121}+\sqrt{120}\right)}\)

\(=\sqrt{2}-1+\sqrt{3}-\sqrt{2}+...+\sqrt{121}-\sqrt{120}\)

\(=\sqrt{121}-1=10\)

\(B=\frac{2}{2.\sqrt{1}}+\frac{2}{2\sqrt{2}}+\frac{2}{2\sqrt{3}}+...+\frac{2}{2\sqrt{35}}\)

\(B>\frac{1}{1+\sqrt{2}}+\frac{2}{\sqrt{2}+\sqrt{3}}+\frac{2}{\sqrt{3}+\sqrt{4}}+...+\frac{2}{\sqrt{35}+\sqrt{36}}\)

\(B>2\left(\frac{\sqrt{2}-\sqrt{1}}{\left(\sqrt{2}-\sqrt{1}\right)\left(\sqrt{2}+\sqrt{1}\right)}+...+\frac{\sqrt{36}-\sqrt{35}}{\left(\sqrt{36}-\sqrt{35}\right)\left(\sqrt{36}+\sqrt{35}\right)}\right)\)

\(B>2\left(\sqrt{36}-\sqrt{1}\right)=10\Rightarrow B>A\)

2 tháng 4 2016

A = 10

CM : B>10

16 tháng 7 2019

Bài 2:

\(D=\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+\frac{1}{4\sqrt{3}+3\sqrt{4}}+...+\frac{1}{120\sqrt{121}+121\sqrt{120}}\)

Với mọi \(n\inℕ^∗\)ta có:

\(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}\)

\(=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{[\left(n+1\right)\sqrt{n}]^2-\left(n\sqrt{n+1}\right)^2}\)

\(=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)^2-n^2\left(n+1\right)}\)

\(=\frac{\left(n+1\right)\sqrt{n}-n\left(\sqrt{n}+1\right)}{n\left(n+1\right)\left(n+1-n\right)}\)

\(=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)}\)

\(=\frac{\left(n+1\right)\sqrt{n}}{n\left(n+1\right)}-\frac{n\sqrt{n+1}}{n\left(n+1\right)}\)

\(=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)

\(\Rightarrow D=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{4}}+\frac{1}{\sqrt{4}}+....+\frac{1}{\sqrt{120}}-\frac{1}{\sqrt{121}}\)

\(=1-\frac{1}{\sqrt{121}}=\frac{10}{11}\)

17 tháng 7 2019

Bài 1: chắc lại phải "liên hợp" gì đó rồi:V

\(\sqrt{2009}-\sqrt{2008}=\frac{1}{\sqrt{2009}+\sqrt{2008}}\)

\(\sqrt{2007}-\sqrt{2006}=\frac{1}{\sqrt{2007}+\sqrt{2006}}\)

Đó \(\sqrt{2009}+\sqrt{2008}>\sqrt{2007}+\sqrt{2006}\)

Nên \(\sqrt{2009}-\sqrt{2008}< \sqrt{2007}-\sqrt{2006}\)

Tổng quát ta có bài toán sau, với So sánh \(\sqrt{n}-\sqrt{n-1}\text{ và }\sqrt{n-2}-\sqrt{n-3}\)

Với \(n\ge3\). Lời giải xin mời các bạn:)

5 tháng 5 2015

\(A=\frac{\sqrt{2}-\sqrt{1}}{\left(\sqrt{2}-\sqrt{1}\right)\left(\sqrt{2}+\sqrt{1}\right)}+\frac{\sqrt{3}-\sqrt{2}}{\left(\sqrt{3}-\sqrt{2}\right).\left(\sqrt{3}+\sqrt{2}\right)}+\frac{\sqrt{4}-\sqrt{3}}{\left(\sqrt{4}-\sqrt{3}\right).\left(\sqrt{4}+\sqrt{3}\right)}+...+\frac{\sqrt{121}-\sqrt{120}}{\left(\sqrt{121}-\sqrt{120}\right)\left(\sqrt{121}+\sqrt{120}\right)}\)

\(A=\frac{\sqrt{2}-\sqrt{1}}{2-1}+\frac{\sqrt{3}-\sqrt{2}}{3-2}+\frac{\sqrt{4}-\sqrt{3}}{4-3}+...+\frac{\sqrt{121}-\sqrt{120}}{121-120}\)

\(A=\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+...+\sqrt{121}-\sqrt{120}\)

\(A=\sqrt{121}-\sqrt{1}=10\)

\(B=\frac{2}{2\sqrt{1}}+\frac{2}{2\sqrt{2}}+\frac{2}{2\sqrt{3}}+...+\frac{2}{2\sqrt{35}}\)

\(B=2.\left(\frac{1}{\sqrt{1}+\sqrt{1}}+\frac{1}{\sqrt{2}+\sqrt{2}}+\frac{1}{\sqrt{3}+\sqrt{3}}+...+\frac{1}{\sqrt{35}+\sqrt{35}}\right)\)

\(>2.\left(\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{35}+\sqrt{36}}\right)\)

\(>2.\left(\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+...+\sqrt{36}-\sqrt{35}\right)\)

\(=2.\left(\sqrt{36}-\sqrt{1}\right)=2.\left(6-1\right)=10=A\)

Vậy B > A

 

1. Tính giá trị biểu thức: \(A=\sqrt{a^2+4ab^2+4b}-\sqrt{4a^2-12ab^2+9b^4}\) với \(a=\sqrt{2}\) ; \(b=1\) 2. Đặt \(M=\sqrt{57+40\sqrt{2}}\) ; \(N=\sqrt{57-40\sqrt{2}}\). Tính giá trị của các biểu thức sau: a) M-N b) \(M^3-N^3\) 3. Chứng minh: \(\left(\frac{x\sqrt{x}+3\sqrt{3}}{x-\sqrt{3x}+3}-2\sqrt{x}\right)\left(\frac{\sqrt{x}+\sqrt{3}}{3-x}\right)=1\) (với \(x\ge0\) và \(x\ne3\)) 4. Chứng minh:...
Đọc tiếp

1. Tính giá trị biểu thức: \(A=\sqrt{a^2+4ab^2+4b}-\sqrt{4a^2-12ab^2+9b^4}\) với \(a=\sqrt{2}\) ; \(b=1\)

2. Đặt \(M=\sqrt{57+40\sqrt{2}}\) ; \(N=\sqrt{57-40\sqrt{2}}\). Tính giá trị của các biểu thức sau:

a) M-N

b) \(M^3-N^3\)

3. Chứng minh: \(\left(\frac{x\sqrt{x}+3\sqrt{3}}{x-\sqrt{3x}+3}-2\sqrt{x}\right)\left(\frac{\sqrt{x}+\sqrt{3}}{3-x}\right)=1\) (với \(x\ge0\)\(x\ne3\))

4. Chứng minh: \(\frac{\left(\sqrt{a}-\sqrt{b}\right)^2+4\sqrt{ab}}{\sqrt{a}+\sqrt{b}}.\frac{a\sqrt{b}-b\sqrt{a}}{\sqrt{ab}}=a-b\) (a > 0 ; b > 0)

5. Chứng minh: \(\sqrt{9+4\sqrt{2}}=2\sqrt{2}+1\) ; \(\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}=5+3\sqrt{2}\) ; \(3-2\sqrt{2}=\left(1-\sqrt{2}\right)^2\)

6. Chứng minh: \(\left(\frac{1}{2\sqrt{2}-\sqrt{7}}-\left(3\sqrt{2}+\sqrt{17}\right)\right)^2=\left(\frac{1}{2\sqrt{2}-\sqrt{17}}-\left(2\sqrt{2}-\sqrt{17}\right)\right)^2\)

7. Chứng minh đẳng thức: \(\left(\frac{3\sqrt{2}-\sqrt{6}}{\sqrt{27}-3}-\frac{\sqrt{150}}{3}\right).\frac{1}{\sqrt{6}}=-\frac{4}{3}\)

8.Chứng minh: \(\frac{2002}{\sqrt{2003}}+\frac{2003}{\sqrt{2002}}>\sqrt{2002}+\sqrt{2003}\)

9. Chứng minh rằng: \(\sqrt{2000}-2\sqrt{2001}+\sqrt{2002}< 0\)

10. \(\frac{1}{2}+\frac{1}{3\sqrt{2}}+...+\frac{1}{\left(n+1\right)\sqrt{n}}< 2\) ; \(\frac{7}{5}< \frac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2-\sqrt{3}}}< \frac{29}{30}\)

0
2 tháng 7 2019

Ta trục căn thức ở mỗi số hạng của A sau đó khử liên tiếp đc : A = 11 - 1 = 10

Ta có : \(B=\frac{2}{2\sqrt{1}}+\frac{2}{2\sqrt{2}}+...+\frac{2}{2\sqrt{35}}\)

\(B=\frac{2}{\sqrt{1}+\sqrt{1}}+\frac{2}{\sqrt{2}+\sqrt{2}}+...+\frac{2}{\sqrt{35}+\sqrt{35}}\)

\(B>2\left(\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{35}+\sqrt{36}}\right)\)

\(B>2\left(\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{36}-\sqrt{35}\right)\)

\(B>2\left(6-1\right)=10\)

Vậy A < B