\(A=\left(2x-x^2\right)\left(x+2\right)\left(x+4\right)\) đạt giá trị lớn...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 9 2015

\(=8x+6x^2-12-9x\)

\(=6x^2-x-12=\left(-6\right)\left(-x^2+\frac{1}{6}x+2\right)\)

\(=\left(-6\right)\left[-x^2-2.\frac{1}{12}.\left(-x\right)+\left(\frac{1}{12}\right)^2-\left(\frac{1}{12}\right)^2+2\right]\)

\(=\left(-6\right)\left[\left(-x-\frac{1}{12}\right)^2+\frac{287}{144}\right]\)

\(=\left(-6\right)\left(-x-\frac{1}{12}\right)^2-\frac{287}{24}\ge-\frac{287}{24}\)

Vậy Min biểu thức = \(-\frac{287}{24}\) khi \(\left(-x-\frac{1}{12}\right)^2=0\Rightarrow-x-\frac{1}{12}=0\Rightarrow-x=\frac{1}{12}\Rightarrow x=-\frac{1}{12}\)

18 tháng 2 2016

Ta có (2x-4)^4 >= 0 khi x = 2

 /4-2x />= 0 khi x = 2

 Vậy min A = 1986 khi x = 2

9 tháng 6 2021

a, ĐKXĐ: x≠±2

A=\(\left(\dfrac{x}{x^2-4}+\dfrac{2}{2-x}+\dfrac{1}{x+2}\right)\left(x-2+\dfrac{10-x^2}{x+2}\right)\)

A=\(\left(\dfrac{x}{x^2-4}-\dfrac{2x+4}{x^2-4}+\dfrac{x-2}{x^2-4}\right)\left(\dfrac{x^2+2x}{x+2}-\dfrac{2x+4}{x+2}+\dfrac{10-x^2}{x+2}\right)\)

A=\(\left(\dfrac{-6}{x^2-4}\right)\left(\dfrac{6}{x+2}\right)\)

A=\(\dfrac{-36}{\left(x-2\right)\left(x+2\right)^2}\)

b, |x|=\(\dfrac{1}{2}\)

TH1z: x≥0 ⇔ x=\(\dfrac{1}{2}\) (TMĐKXĐ)

TH2: x<0 ⇔ x=\(\dfrac{-1}{2}\) (TMĐXĐ)

Thay \(\dfrac{1}{2}\)\(\dfrac{-1}{2}\) vào A ta có:

\(\dfrac{-36}{\left(\dfrac{1}{2}-2\right)\left(\dfrac{1}{2}+2\right)^2}\)=\(\dfrac{96}{25}\)

\(\dfrac{-36}{\left(\dfrac{-1}{2}-2\right)\left(\dfrac{-1}{2}+2\right)^2}\)=\(\dfrac{32}{5}\)

c, A<0 ⇔ \(\dfrac{-36}{\left(x-2\right)\left(x+2\right)^2}\) ⇔ (x-2)(x+2)< 0

⇔   {x-2>0        ⇔      {x>2

     [                           [

       {x+2<0                 {x<2

⇔   {x-2<0        ⇔      {x<2

     [                           [

       {x+2>0                 {x>2

⇔ x<2 

Vậy x<2 (trừ -2)

 

 

 

 

11 tháng 6 2021

mấy dấu ngoặc vuông là sao á bạn, mình không hiểu lắm:((

 

10 tháng 7 2018

1 c nha các bạn

9 tháng 8 2018

Ta có:\(P=x^3\left(z-y^2\right)+y^3x-y^3z^2+z^3y-z^3x^2+x^2y^2z^2-xyz\)

\(\Rightarrow P=x^3\left(z-y^2\right)+x^2y^2z^2-x^2z^3-\left(y^3z^2-z^3y\right)+y^3x-xyz\)

\(\Rightarrow P=x^3\left(z-y^2\right)+x^2z^2\left(y^2-z\right)-yz^2\left(y^2-z\right)+xy\left(y^2-z\right)\)

\(\Rightarrow P=\left(y^2-z\right)\left(x^2z^2-x^3-yz^2+xy\right)\)

\(\Rightarrow P=\left(y^2-z\right)\left(x^2z^2-x^3+xy-yz^2\right)\)

\(\Rightarrow P=\left(y^2-z\right)\left(x^2\left(z^2-x\right)+y\left(x-z^2\right)\right)\)

\(\Rightarrow P=\left(y^2-z\right)\left(x^2\left(z^2-x\right)-y\left(z^2-x\right)\right)\)

\(\Rightarrow P=\left(y^2-z\right)\left(z^2-x\right)\left(x^2-y\right)\)

\(\Rightarrow P=abc\)

Vì a, b, c là hằng số nên P có giá trị không phụ thuộc vào x, y, z

22 tháng 12 2017

a) \(x^3-\dfrac{1}{4}x=0\)

\(x.\left(x^2-\dfrac{1}{4}\right)=0\)

\(x\left(x-\dfrac{1}{2}\right)\left(x+\dfrac{1}{2}\right)=0\)

⇔ x = 0 hoặc \(x=\dfrac{1}{2}\) hoặc \(x=\dfrac{-1}{2}\)

b) (2x - 1)2 - (x + 3)2 = 0

⇔ (2x - 1 - x - 3)(2x - 1 + x + 3) = 0

⇔ (x - 4)(3x +2) = 0

⇔ x = 4 hoặc \(x=\dfrac{-2}{3}\)

c) 2x2 - x - 6 = 0

⇔ 2x2 - 4x + 3x - 6 = 0

⇔ 2x(x - 2) + 3(x - 2) = 0

⇔ (x - 2) (2x + 3) = 0

⇔ x = 2 hoặc \(x=\dfrac{-3}{2}\)

22 tháng 12 2017

2)a.

\(B=\left(\dfrac{x}{x^2-36}-\dfrac{x-6}{x^2+6x}\right):\dfrac{2x-6}{x^2+6x}\\ =\left(\dfrac{x\left(x^2+6x\right)-\left(x-6\right)\left(x^2-36\right)}{\left(x^2-36\right)\left(x^2+6x\right)}\right).\dfrac{x^2+6x}{2x-6}\\ =\dfrac{x^2\left(x+6\right)-\left(x-6\right)^2.\left(x+6\right)}{x^2-36}.\dfrac{1}{2x-6}\\ =\dfrac{\left(x+6\right)\left(x^2-\left(x-6\right)^2\right)}{x^2-36}.\dfrac{1}{2x-6}\\ =\dfrac{\left(x-x+6\right)\left(x+x-6\right)}{x-6}.\dfrac{1}{2x-6}\\ =\dfrac{6.\left(2x-6\right)}{x-6}.\dfrac{1}{2x-6}\\ =\dfrac{6}{x-6}\)

b)

\(x=2\Leftrightarrow B=\dfrac{6}{x-6}=\dfrac{6}{2-6}=\dfrac{6}{-4}=-\dfrac{3}{2}\)