Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(3\sqrt{3}\right)^{\frac{4}{3}}+\left(\frac{1}{16}\right)^{\frac{3}{4}}+2\left(\frac{8}{27}\right)^{\frac{2}{3}}\)
\(A=\left(3\sqrt{3}\right)^{\frac{4}{3}}+55+\frac{32}{3}\)
\(A=\left(3\sqrt{3}\right)^{\frac{4}{3}}+\frac{197}{3}\)
\(A=243+\frac{197}{3}\)
\(A=\frac{926}{3}\)
Ta có \(A=3^{\frac{3}{2}.\frac{4}{3}}+\left(\frac{1}{2}\right)^{4.\frac{3}{4}}+2\left(\frac{2}{3}\right)^{3.\frac{2}{3}}=3^2+\left(\frac{1}{2}\right)^3+2\left(\frac{2}{3}\right)^2=\frac{721}{72}\)
\(=\left(log_{a^{-1}}a^2\right)^2+\dfrac{1}{2}.\dfrac{1}{2}log_aa\)
\(=\left(-1.2.log_aa\right)^2+\dfrac{1}{4}=4+\dfrac{1}{4}=\dfrac{17}{4}\)
Lời giải:
Sử dụng công thức \(\log_ab=\frac{\ln b}{\ln a}\)
\(\Rightarrow A=\frac{\ln 2}{\ln 3}.\frac{\ln 3}{\ln 4}.\frac{\ln 4}{\ln 5}....\frac{\ln 15}{\ln 16}\)
\(\Leftrightarrow A=\frac{\ln 2}{\ln 16}=\log_{16}2=\frac{1}{4}\)
Đáp án C.
Giải
đàu tiên ta tìm bán kính đường tròn ngoại tiếp tam giác cân ABE (EA=EB)
R=\( \frac{AE.EB.AB}{4S}\) =\(\frac{5}{8}\) .Gọi I là tâm đường trong ngoại tiếp→AI=\(\frac{5}{8}\) .Gọi N là trung điểm SA
Trong mp(SAI) từ I kẻ đt d vuông góc vs đáy.Từ N kẻ đt vuông góc SA cắt d tại O
suy ra O là tâm mặt cầu cần tìm
dựa vào tam giác vuông OAI suy ra bán kính mặt cầu =\(\sqrt{OI^2 +AI^2}\)=\(\frac{\sqrt{41}}{8}\)
suy ra diện tích mặt cầu=4π\(R^2\) suy ra C
2 2 2 2 = 2 2 4 = 2 16 ( 2 4 = 16 )
Chọn đáp án B