Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Các điểm A,B,C trong Hình 8 biểu diễn lần lượt các số hữu tỉ: \(\frac{{ - 7}}{4};\,\frac{3}{4};\,\frac{5}{4}.\)
b) Ta có: \(1\frac{1}{5} = \frac{6}{5};\,\,\, - 0,8 = \frac{{ - 8}}{{10}} = \frac{{ - 4}}{5}.\)
Vậy ta biểu diễn các số hữu tỉ \(\frac{{ - 2}}{5};\,1\frac{1}{5};\,\frac{3}{5};\, - 0,8\) trên trục số như sau:
a) Ta có: \( - 0,625 = \frac{{ - 625}}{{1000}}= \frac{{ - 625:125}}{{1000:125}} = \frac{{ - 5}}{8}\)
\(\begin{array}{l}\frac{5}{{ - 8}} = \frac{{ - 5}}{8};\\\frac{{10}}{{16}} = \frac{{10:2}}{{16:2}} = \frac{5}{8};\\\frac{{20}}{{ - 32}} = \frac{{20:( - 4)}}{{( - 32):( - 4)}} = \frac{{ - 5}}{8};\\\frac{{ - 10}}{{16}} = \frac{{( - 10):2}}{{16:2}} = \frac{{ - 5}}{8};\\\frac{{ - 25}}{{40}} = \frac{{( - 25):5}}{{40:5}} = \frac{{ - 5}}{8};\\\frac{{35}}{{ - 48}}\end{array}\)
Vậy các phân số biểu diễn số hữu tỉ -0,625 là:
\(\frac{5}{{ - 8}};\frac{{20}}{{ - 32}};\frac{{ - 10}}{{16}};\frac{{ - 25}}{{40}}\)
b) Ta có: \( - 0,625 = \frac{{ -5}}{{8}}\) nên ta biểu diễn số hữu tỉ \(\frac{{ -5}}{{8}}\) trên trục số.
Chia đoạn thẳng đơn vị thành 8 phần bằng nhau, lấy một đoạn làm đơn vị mới, đơn vị mới bằng \(\frac{1}{8}\) đơn vị cũ.
Lấy một điểm nằm trước O và cách O một đoạn bằng 5 đơn vị mới. Điểm đó biểu diễn số hữu tỉ \(\frac{{ -5}}{{8}}\)
a) Các điểm M, N, Q biểu diễn lần lượt các số hữu tỉ:\(\frac{5}{3};\,\frac{{ - 1}}{3};\,\frac{{ - 4}}{3}\).
b)
Ta viết:
- Vẽ trục số.
- Chia đoạn thẳng đơn vị (chẳng hạn đoạn từ điểm 0 đến -1 trên trục số) thành 5 phần bằng nhau, lấy một đoạn làm đơn vị mới, thì đơn vị mới bằng đơn vị cũ.
- Vì < 0 nên số hữu tỉ được biểu diễn bởi điểm M nằm bên trái điểm 0 và cách điểm 0 một đoạn bằng 2 đơn vị mới.
Vậy số hữu tỉ được biểu diễn trên trục số như hình vẽ dưới đây.
Trả lời :
-------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|--------
..... -2 -1 \(\frac{-2}{5}\) 0 1 2 ......
~~Học tốt~~