Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Công thức 1 : \(a^m:a^n=a^{m-n}\)với \(m\ge n\)
Công thức 2 : \(a^n\cdot b^n=\left(a\cdot b\right)^n\)
Công thức 3 : \(\frac{a^n}{b^n}=\left(\frac{a}{b}\right)^n\)
Công thức 4 : \(\left(a^m\right)^n=a^{m\cdot n}\)
\(a,2^2=4,2^3=8,2^4=16,2^5=32,2^6=64,2^7=128,2^8=256,2^9=512,2^{10}=1024\)
\(b,3^2=9,3^3=27,3^4=81,3^5=243\)
\(c,4^2=16,4^3=64,4^4=256\)
\(d,5^2=25,5^3=125,5^4=625\)
khi Chia 2 lũy thừa cùng cơ số ta giữ nguyên cơ số rồi công số mũ, công thức\(x^m:x^n=x^{m-n}\left(x\ne0,m\ge n\right)\)
khi Nhân 2 lũy thừa cùng số mũ ta giữ nguyên số mũ rồi nhân hai cơ số, công thức\(n^x.m^x=\left(n.m\right)^x\)
khi Chia 2 lũy thừa cùng số mũ ta giữ nguyên số mũ rồi chia hai cơ số, công thức\(n^x:m^x=\left(n:m\right)^x,khi\left(n⋮m\right)\)
khi Lũy thừa cho 1 lũy thừa ta nhân 2 số mũ rồi giữ nguyên cơ số công thức\(\left(x^n\right)^m=x^{n.m}\)
a: \(\left(3^2\right)^3=3^6\)
\(\left(3^3\right)^2=3^6\)
\(\left(3^2\right)^5=3^{10}\)
\(9^8=3^{16}\)
\(27^6=3^{18}\)
\(81^{10}=3^{40}\)
b: \(\left(5^3\right)^2=5^6\)
\(\left(5^2\right)^4=5^8\)
\(\left(5^4\right)^3=5^{12}\)
\(25^5=5^{10}\)
\(125^{14}=5^{42}\)
a, 34.275.(32)3 = 34.(33)5.36 = 34.315.36 = 325
b, (23)4.46.32 = 212.212.25 = 229
c, 32019.62019: 22019 = 32019.32019.22019:22019 = (3.3)2019= 92019
d, 1258.(52)4 = (53)8.58 = 532
a) 4 ; 8 ; 16 ; 32 ; 64
b) 9 ; 27 ; 81 ; 243
c) 16 ; 64 ; 256
d) 25 ; 125
Chúc bạn học tốt!! ^^
a) \(2^2=4\)
\(2^3=8\)
\(2^4=16\)
\(2^5=32\)
\(2^6=64\)
b) \(3^2=3\)
\(3^3=27\)
\(3^4=81\)
\(3^5=243\)
c) \(4^2=16\)
\(4^3=64\)
\(4^4=256\)
d) \(5^2=25\)
\(5^3=125\)
a, \(\left(3^2\right)^3=3^{2.3}=3^6\) ; \(\left(3^3\right)^2=3^{3.2}=3^6\) ; \(\left(3^2\right)^5=3^{2.5}=3^{10}\)
\(9^8=\left(3^2\right)^8=3^{2.8}=3^{16}\)
\(27^6=\left(3^3\right)^6=3^{3.6}=3^{18}\)
\(81^{10}=\left(3^4\right)^{10}=3^{4.10}=3^{40}\)
b, \(\left(5^3\right)=5^3\) ; \(\left(5^4\right)^3=5^{4.3}=5^{12}\) ; \(\left(5^2\right)^4=5^{2.4}=5^8\)
\(25^5=\left(5^2\right)^5=5^{2.5}=5^{10}\)
\(125^{14}=\left(5^3\right)^{14}=5^{3.14}=5^{42}\)