Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử z = x + yi (x, y ε R), khi đó trên mặt phẳng toạ độ Oxy, điểm M(x;y) biểu diaãn số phức z.
a) Phần thực của z bằng -2, tức là x = -2, y ε R.
Vậy tập hợp các điểm biểu diễn số phức z là đường thẳng x = -2 trên mặt phẳng toạ độ Oxy
b) Ta có x ε R và y = 3
Vậy tập hợp điểm biểu diễn số phức z là đường thẳng y = 3 trên mặt phẳng Oxy.
c) Ta có x ε (-1;2) và y ε R.
Vậy tập hợp số phức z cần tìm là các điểm nằm giữa hai đường thẳng x = -1 và x = 2 trên mặt phẳng Oxy
d) Ta có x ε R và y ε [1;3]
Vậy tập hợp các điểm cần tìm là phần mặt phẳng nằm giữa hai đường thẳng y = 1 và y = 3
e) Ta có x ε [-2; 2] và y ε [-2; 2]
Vậy tập hợp các điểm cần tìm là phần mặt phẳng thuộc hình vuông (kể cả cạnh) được vẽ trên hình e (phần gạch sọc).
Đáp án A
Phương pháp.
Giả sử Giả phương trình ban đầu để tìm được nghiệm z 1 , z 2 Sử dụng giả thiết để đánh giá cho cho b. Đưa về một hàm cho b và sử dụng ước lượng cho b ở phần trước để tìm giá trị nhỏ nhất của P.
Lời giải chi tiết.
Tính toán ta tìm được hai nghiệm
Giả sử . Từ ta suy ra
Áp dụng (1) ta nhận được
Do đó giá trị nhỏ nhất của là 2016 - 1
Đạt được khi và chỉ khi
Đáp án A
Phương pháp :
Tìm nghiệm phức có phần ảo dương của phương trình bằng MTCT.
Cách giải:
Sử dụng MTCT ta tính được nghiệm phức có phần ảo dương của phương trình trên là
Đáp án B.
Ta có: Phần thực: –4, phần ảo: –3
Hai ý (3) và (4) sai.
Đáp án A
Phương trình
Ta có
Vật giá trị nhỏ nhất của biểu thức P là
Đáp án C.