K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2021

thiếu đề

Biết xyz=1 .Tính tổng A=(5/x+xy+1)+

cái chỗ giấu cộng này (5/y+yz+ chố đấy thiếu bạn chụp lại mình xem nào

\(A=\frac{x}{xy+x+xyz}+\frac{y}{yz+y+1}+\frac{z}{xz+z+xyz}\)

\(=\frac{1+y+yz}{y+yz+1}=1\)

25 tháng 6 2023

mình vô tri quá :")

11 tháng 3 2020

Ta có : \(A=\frac{2019}{x+xy+1}+\frac{2019}{y+yz+1}+\frac{2019}{z+zx+1}=2019\left(\frac{1}{x+xy+1}+\frac{1}{y+yz+1}+\frac{1}{z+zx+1}\right)\)

\(=2019\left(\frac{z}{xz+xyz+z}+\frac{xz}{xyz+xyz^2+xz}+\frac{1}{z+zx+1}\right)\)

\(=2019\left(\frac{z}{xz+z+1}+\frac{xz}{1+z+xz}+\frac{1}{z+zx+1}\right)\)(vì xyz = 1)

\(=2019\left(\frac{z+xz+1}{xz+z+1}\right)=2019\)

Vậy A = 2019

11 tháng 4 2016

Vì xyz = 1 nên x = y = z = 1

=> \(A=\frac{1}{1.1+1+1}+\frac{1}{1.1+1+1}+\frac{1}{1.1+1+1}=\frac{1}{3}+\frac{1}{3}+\frac{1}{3}=1\)

7 tháng 3 2019

TA CÓ \(\frac{x}{xy+x+1}\)+\(\frac{y}{yz+y+1}\)+\(\frac{z}{xz+z+1}\)

         =\(\frac{x}{xy+x+1}\)+\(\frac{xy}{xyz+xy+x}\)+\(\frac{xyz}{x^2yz+xyz+xy}\)

         =\(\frac{x}{xy+x+1}\)+\(\frac{xy}{xy+x+1}\)+\(\frac{1}{xy+x+1}\)(vì xyz=1)

        =\(\frac{x+xy+1}{xy+x+1}\)

        = 1

28 tháng 1 2019

thay xyz=2017, ta có:

\(D=\frac{xyzx}{xy+xyzx+xyz}+\frac{y}{yz+y+xzy}+\frac{z}{xz+z+1}\)

\(D=\frac{xz}{1+xz+z}+\frac{1}{x+1+xz}+\frac{z}{xz+x+1}=1\)

\(\text{Bài làm }\)

\(\text{ Gọi xyz = 2017}\)

\(\text{Ta có:}\) \(D=\frac{xyzx}{xy+xyzx+xyz}+\frac{y}{yz+y+xzy}+\frac{z}{xz+z+1}\)

           \(D=\frac{xz}{1+xz+z}+\frac{1}{x+1+xz}+\frac{z}{xz+x+1}=1\)

\(\text{# Chúc bạn học tốt #}\)

12 tháng 1 2018

\(A=\frac{x}{xy+x+1}+\frac{y}{y+1+yz}+\frac{z}{1+z+xz}\)

\(=\frac{x}{xy+x+1}+\frac{xy}{xy+x+xyz}+\frac{xyz}{xy+xyz+x^2yz}\)

\(=\frac{x}{xy+x+1}+\frac{xy}{xy+x+1}+\frac{1}{xy+1+x}\)

\(=\frac{xy+x+1}{xy+x+1}=1\)

12 tháng 1 2018

\(\frac{x}{xy+x+1}+\frac{xy}{yx+x+xyz}+\frac{xyz}{xy+xyz+x^2yz}\)

\(\frac{x}{xy+x+1}+\frac{xy}{yx+x+1}+\frac{1}{xy+1+x}\)

\(\frac{x+xy+1}{xy+x+1}=1\)

Ta có:\(\frac{x}{xy+x+1}=\frac{y}{yz+y+1}=\frac{z}{xz+x+1}\)=\(\frac{xz}{xyz+xz+z}=\frac{yxz}{xyz^2+yxz+xz}=\frac{z}{xz+z+1}\)

=\(\frac{xz}{1+xz+z}=\frac{xyz}{z+1+xz}=\frac{z}{xz+z+1}\)

=\(\frac{xyz+xz+1}{xyz+xz+1}\)=1

Đề bn ghi sai nha~~