K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 4 2018

áp dụng bất đẳng thức buinhia

\(\left(x+y\right)^2=\left(1x+1y\right)^2\le\left(x^2+y^2\right)\left(1^2+1^2\right)\)

\(\Leftrightarrow\left(x+y\right)^2\le2\left(x^2+y^2\right)\le2\cdot2=4\)

\(\Leftrightarrow x+y\le\sqrt{4}=2\)

17 tháng 4 2016

x+y nhỏ hơn hoặc bằng 2 nhé.mong các bản giải giúp mk

17 tháng 4 2016

Ta có \(x^3+y^3=2\)

\(\left(x+y\right)\left(x^2-xy+y^2\right)=2\)

Vì \(x^2-xy+y^2\) \(\ge\) 0

Mà \(\left(x+y\right)\left(x^2-xy+y^2\right)=2\Rightarrow x+y\le2\)

10 tháng 2 2017

-có lẽ là x3+y3=x-y-

Vì x,y>0=>x3+y3>0=>x-y>0

Có x2+y2<1<=>(x-y)(x2+y2)<x-y<=>(x-y)(x2+y2)<x3+y3

<=>x3+xy2-x2y-y3<x3+y3<=>x3+y3-x3-xy2+x2y+y3>0

<=>2y3-xy2+x2y>0<=>y(2y2-xy+x2)>0

<=>y[7y2/4+(y/2 - x)2] > 0 (luôn đúng do x,y>0)

8 tháng 12 2017

Ta có: \(x>y>0\)

\(\Rightarrow x^5-y^5< x^5+y^5\)

\(\Leftrightarrow\left(x-y\right)\left(x^4+x^3y+x^2y^2+xy^3+y^4\right)< x-y\)

\(\Leftrightarrow x^4+x^3y+x^2y^2+xy^3+y^4< 1\)               \(\left(1\right)\)

Lại có: \(x>y>0\)

\(\Rightarrow x^4+y^4< x^4+x^3y+x^2y^2+xy^3+y^4\)               \(\left(2\right)\)

Từ (1) và (2) suy ra \(x^4+y^4< 1\)

Vậy \(x^4+y^4< 1\)

9 tháng 12 2017

Ta có:  \(x>y>0\)

\(\Rightarrow x^5-y^5< x^5+y^5\)

\(\Leftrightarrow\left(x-y\right)\left(x^4+x^3y+x^2y^2+xy^3+y^4\right)< x-y\)

\(\Leftrightarrow x^4+x^3y+x^2y^2+xy^3+y^4< 1^{\left(1\right)}\)

Lại có: \(x>y>0\)

\(\Rightarrow x^4+y^4< x^4+x^3y+x^2y^2+xy^3+y^4\)(2)

Từ (1) và (2) suy ra : \(x^4+y^4< 1\)

Vậy \(x^4+y^4< 1\)(đpcm)

f: x+y+z=3

=>x^2+y^2+z^2+2(xy+xz+yz)=9

=>2(xy+yz+xz)=6

=>xy+yz+xz=3

mà x+y+z=3

nên x=y=z=1

e: x^2+y^2+2=2(x+y)

=>(x+y)^2-2xy+2-2(x+y)=0

=>(x+y)(x+y-2)-2(xy-1)=0

=>x=y=1

24 tháng 10 2019

x2+y2+z2=1 => x;y;z \(\le1\)(1)

1= (x+y+z)2= x2+y2+z2+ 2(xy+yz+zx) = 1+ 2(xy+yz+zx) => xy+yz+zx=0 => xy= z(-y-x) = z(z-1)

x3+y3 =1 <=> (x+y)(x2+y2 -xy)=1 <=> (1-z)(1-z2-z(z-1))=1 <=> (z-1)(2z2-z-1)= 2z3 -3z2 =0 <=> z=0 hoặc z= \(\frac{3}{2}\)(loại vì lớn hơn 1)

 z=0 => x+y=1; xy= 0;

y=y(x+y) = xy+ y2 = y2

=> x+y2 +z3 = x+ y+ 0 = 1 (điều phải chứng minh)

6 tháng 6 2018

a) Mình làm lại , mk thiếu dấu

Ta có : y ≤ 1 ⇒ x ≥ xy ( x > 0) ( 1)

Tương tự : y ≥ yz ( y > 0) ( 2) ; z ≥ xz ( z > 0) ( 3)

Cộng từng vế của ( 1 ; 2 ; 3) , ta có :

x + y + z ≥ xy + yz + zx

⇔ x + y + z - xy - yz - xz ≥ 0 ( *)

Lại có : x ≤ 1 ⇒ x - 1 ≤ 0 ( 4)

Tương tự : y - 1 ≤ 0 ( 5) ; z - 1≤ 0 ( 6)

Nhân vế với vế của ( 4 ; 5 ; 6) , ta có :

( x - 1)( y - 1)( z - 1) ≤ 0

⇔ x + y + z - xy - yz - zx + xyz - 1 ≤ 0

⇔ x + y + z - xy - yz - zx ≤ 1 - xyz ( 7)

Do : 0 ≤ x , y , z ≤ 1 ⇒ 0 ≤ xyz ⇒ - xyz ≤ 0 ⇒ 1 - xyz ≤ 1 ( 8)

Từ ( 7;8 ) ⇒ x + y + z - xy - yz - zx ≤ 1 ( **)

Từ ( * ; **) ⇒ đpcm

6 tháng 6 2018

j mà lắm bài thế :D