Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(x^3+y^3=2\)
\(\left(x+y\right)\left(x^2-xy+y^2\right)=2\)
Vì \(x^2-xy+y^2\) \(\ge\) 0
Mà \(\left(x+y\right)\left(x^2-xy+y^2\right)=2\Rightarrow x+y\le2\)
-có lẽ là x3+y3=x-y-
Vì x,y>0=>x3+y3>0=>x-y>0
Có x2+y2<1<=>(x-y)(x2+y2)<x-y<=>(x-y)(x2+y2)<x3+y3
<=>x3+xy2-x2y-y3<x3+y3<=>x3+y3-x3-xy2+x2y+y3>0
<=>2y3-xy2+x2y>0<=>y(2y2-xy+x2)>0
<=>y[7y2/4+(y/2 - x)2] > 0 (luôn đúng do x,y>0)
Ta có: \(x>y>0\)
\(\Rightarrow x^5-y^5< x^5+y^5\)
\(\Leftrightarrow\left(x-y\right)\left(x^4+x^3y+x^2y^2+xy^3+y^4\right)< x-y\)
\(\Leftrightarrow x^4+x^3y+x^2y^2+xy^3+y^4< 1\) \(\left(1\right)\)
Lại có: \(x>y>0\)
\(\Rightarrow x^4+y^4< x^4+x^3y+x^2y^2+xy^3+y^4\) \(\left(2\right)\)
Từ (1) và (2) suy ra \(x^4+y^4< 1\)
Vậy \(x^4+y^4< 1\)
Ta có: \(x>y>0\)
\(\Rightarrow x^5-y^5< x^5+y^5\)
\(\Leftrightarrow\left(x-y\right)\left(x^4+x^3y+x^2y^2+xy^3+y^4\right)< x-y\)
\(\Leftrightarrow x^4+x^3y+x^2y^2+xy^3+y^4< 1^{\left(1\right)}\)
Lại có: \(x>y>0\)
\(\Rightarrow x^4+y^4< x^4+x^3y+x^2y^2+xy^3+y^4\)(2)
Từ (1) và (2) suy ra : \(x^4+y^4< 1\)
Vậy \(x^4+y^4< 1\)(đpcm)
f: x+y+z=3
=>x^2+y^2+z^2+2(xy+xz+yz)=9
=>2(xy+yz+xz)=6
=>xy+yz+xz=3
mà x+y+z=3
nên x=y=z=1
e: x^2+y^2+2=2(x+y)
=>(x+y)^2-2xy+2-2(x+y)=0
=>(x+y)(x+y-2)-2(xy-1)=0
=>x=y=1
x2+y2+z2=1 => x;y;z \(\le1\)(1)
1= (x+y+z)2= x2+y2+z2+ 2(xy+yz+zx) = 1+ 2(xy+yz+zx) => xy+yz+zx=0 => xy= z(-y-x) = z(z-1)
x3+y3 =1 <=> (x+y)(x2+y2 -xy)=1 <=> (1-z)(1-z2-z(z-1))=1 <=> (z-1)(2z2-z-1)= 2z3 -3z2 =0 <=> z=0 hoặc z= \(\frac{3}{2}\)(loại vì lớn hơn 1)
z=0 => x+y=1; xy= 0;
y=y(x+y) = xy+ y2 = y2
=> x+y2 +z3 = x+ y+ 0 = 1 (điều phải chứng minh)
a) Mình làm lại , mk thiếu dấu
Ta có : y ≤ 1 ⇒ x ≥ xy ( x > 0) ( 1)
Tương tự : y ≥ yz ( y > 0) ( 2) ; z ≥ xz ( z > 0) ( 3)
Cộng từng vế của ( 1 ; 2 ; 3) , ta có :
x + y + z ≥ xy + yz + zx
⇔ x + y + z - xy - yz - xz ≥ 0 ( *)
Lại có : x ≤ 1 ⇒ x - 1 ≤ 0 ( 4)
Tương tự : y - 1 ≤ 0 ( 5) ; z - 1≤ 0 ( 6)
Nhân vế với vế của ( 4 ; 5 ; 6) , ta có :
( x - 1)( y - 1)( z - 1) ≤ 0
⇔ x + y + z - xy - yz - zx + xyz - 1 ≤ 0
⇔ x + y + z - xy - yz - zx ≤ 1 - xyz ( 7)
Do : 0 ≤ x , y , z ≤ 1 ⇒ 0 ≤ xyz ⇒ - xyz ≤ 0 ⇒ 1 - xyz ≤ 1 ( 8)
Từ ( 7;8 ) ⇒ x + y + z - xy - yz - zx ≤ 1 ( **)
Từ ( * ; **) ⇒ đpcm
áp dụng bất đẳng thức buinhia
\(\left(x+y\right)^2=\left(1x+1y\right)^2\le\left(x^2+y^2\right)\left(1^2+1^2\right)\)
\(\Leftrightarrow\left(x+y\right)^2\le2\left(x^2+y^2\right)\le2\cdot2=4\)
\(\Leftrightarrow x+y\le\sqrt{4}=2\)