K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 1 2021

x^3-7x-6

=x^3-3x^2+3x^2-9x+2x-6

=(x-3)(x^2+3x+2)

=(x-3)[(x^2+x)+(2x+2)]

=(x-3)(x+1)(x+2)

 

10 tháng 1 2021

Cho em hỏi làm sao mà từ dấu = thứ nhất ra dấu = thứ hai được vậy ạ

 

10 tháng 11 2018

b)\(x^4+6x^3+7x^2-6x+1=x^4+6x^3-2x^2+9x^2-6x+1\)

=\(x^4+\left(6x^3-2x^2\right)+\left(9x^2-6x+1\right)\)

\(=\left(x^2\right)^2-2x^2\left(3x-1\right)+\left(3x-1\right)^2\)

\(=\left(x^2+3x-1\right)^2\)

c)\(x\left(x+4\right)\left(x+6\right)\left(x+10\right)+128\)

\(=\left(x^2+10x\right)\left(x^2+10x+24\right)+128\)

đặt \(x^2+10x+12=z\)

\(=\left(z-12\right)\left(z+12\right)+128=z^2-144+128\)

\(=z^2-16=\left(z-4\right)\left(z+4\right)\)\(=\left(x^2+10x-4+12\right)\left(x^2+10x+4+12\right)\)

\(=\left(x^2+10x+8\right)\left(x^2+10x+16\right)\)

\(=\left(x^2+10x+8\right)\left(x^2+2x+8x+16\right)\)

\(=\left(x^2+10x+8\right)\left[x\left(x+2\right)+8\left(x+2\right)\right]\)

\(=\left(x^2+10x+8\right)\left(x+2\right)\left(x+8\right)\)

11 tháng 11 2018

thanks Hoàng Long

12 tháng 3 2020

1/Đặt Q(x) là thương ta có

\(x^3-7x^2+a=Q\left(x\right).\left(x-2\right)\).Thay x=2 đc

\(8-28+a=0\Leftrightarrow a=20\)

2/a/ĐKXĐ: x khác 2,-3

\(M=\frac{x+2}{x+3}-\frac{5}{\left(x-2\right)\left(x+3\right)}-\frac{1}{x-2}\)

\(\Leftrightarrow M=\frac{x^2-4}{\left(x-2\right)\left(x+3\right)}-\frac{5}{\left(x-2\right)\left(x+3\right)}-\frac{x+3}{\left(x-2\right)\left(x+3\right)}\)

\(\Leftrightarrow M=\frac{x^2-4-5-x-3}{\left(x-2\right)\left(x+3\right)}\)

\(\Leftrightarrow M=\frac{x^2-x-12}{\left(x-2\right)\left(x+3\right)}\)

\(\Leftrightarrow M=\frac{\left(x-4\right)\left(x+3\right)}{\left(x-2\right)\left(x+3\right)}\)

\(\Leftrightarrow M=\frac{x-4}{x-2}\)

b/\(M=\frac{x-2-2}{x-2}=1-\frac{2}{x-2}\).Để M nguyên thì \(2⋮x-2\Rightarrow x-2\in\left(+-1,+-2\right)\Rightarrow x\in\left(3,1,4,0\right)\)

6 tháng 8 2018

\(b,5x\left(x-1\right)-3x\left(1-x\right)=\left(5x+3x\right)\left(x-1\right)\)

\(c,-16a^4.b^6-24a^5.b^5-9a^6.b^4\)

\(=-a^4.b^4[\left(4b\right)^2+2.4.a.3.b+\left(3a\right)^2]\)

\(=-a^4.b^4\left(4b+3a\right)^2\)

30 tháng 9 2017

\(M=x^6-20x^5-20x^4-20x^3-20x^2-20x+3\)

\(M=x^6-\left(x-1\right)x^5-\left(x-1\right)x^4-\left(x-1\right)x^3-\left(x-1\right)x^2-\left(x-1\right)x+3\)

\(M=x^6-x^6+x^5-x^5+x^4-x^4+x^3-x^3+x^2-x+3\)

\(M=x+3\) (1)

Thay \(x=21\)vào (1) ta được:

\(M=21+3\)

\(M=24\)

Còn câu N bạn tham khảo tại link này nha:

Câu hỏi của Hoang Linh - Toán lớp 8 | Học trực tuyến

Chúc bạn học thật tốt!ok

2 tháng 10 2017

Cảm ơn bạn nhiều nha!!!😘😘😘

29 tháng 8 2018

1) ta có : \(x^2+5y^2-4xy+2y=3\Leftrightarrow\left(x-2y\right)^2+\left(y+1\right)^2=2\)

\(\Leftrightarrow\left(x-2y\right)^2=2-\left(y+1\right)^2\ge0\) \(\Leftrightarrow2\ge\left(y+1\right)^2\Leftrightarrow-\sqrt{2}\le y+1\le\sqrt{2}\)

\(\Leftrightarrow-\sqrt{2}-1\le y\le\sqrt{2}-1\)

ta lại có : \(\left(y+1\right)^2=2-\left(x-2y\right)^2\ge0\)

\(\Leftrightarrow2\ge\left(x-2y\right)^2\Leftrightarrow-\sqrt{2}\le x-2y\le\sqrt{2}\)

\(\Leftrightarrow-\sqrt{2}+2y\le x\le\sqrt{2}+2y\Leftrightarrow-2-3\sqrt{2}\le x\le-2+3\sqrt{2}\)

vậy \(x_{max}=-2+3\sqrt{2}\)

dâu "=" xảy ra khi \(y=\sqrt{2}-1\)

29 tháng 8 2018

câu 3 : ta có : \(x^2+2y^2+2xy+7x+7y+10=0\)

\(\Leftrightarrow y^2=-\left(x+y\right)^2-7\left(x+y\right)-10\ge0\)

\(\Leftrightarrow-5\le x+y\le-2\)

\(\Rightarrow S_{max}=-2\) khi \(\left\{{}\begin{matrix}y^2=0\\x+y=-2\end{matrix}\right.\Leftrightarrow y=0;x=-2\)

\(S_{min}=-5\) khi \(\left\{{}\begin{matrix}y^2=0\\x+y=-5\end{matrix}\right.\Leftrightarrow y=0;x=-5\)

bài này có trong đề thi hsg trường mk :)

AH
Akai Haruma
Giáo viên
25 tháng 10 2017

Từng sau đăng bài bạn chịu khó đừng chụp ngang nhé, mình vẹo cả cổ để đọc được bài. Cố gắng trình bày latex càng tốt.

Bài 1: Phân tích đa thức thành nhân tử

a) Ta có: \(25\left(x-y\right)^2-16\left(x+y\right)^2\)

\(=\left(5x-5y\right)^2-\left(4x+4y\right)^2\)

\(=\left(5x-5y-4x-4y\right)\left(5x-5y+4x+4y\right)\)

\(=\left(x-9y\right)\left(9x-y\right)\)

b) Ta có: \(x^2y+xy^2-x-y\)

\(=xy\left(x+y\right)-\left(x+y\right)\)

\(=\left(x+y\right)\left(xy-1\right)\)

c) Sửa đề: \(ax^2-ay^2-7x-7y\)

Ta có: \(ax^2-ay^2-7x-7y\)

\(=a\left(x^2-y^2\right)-7\left(x+y\right)\)

\(=\left(x+y\right)\cdot a\left(x-y\right)-7\left(x+y\right)\)

\(=\left(x+y\right)\left(ax-ay-7\right)\)

d) Ta có: \(x^4-4x^2-5\)

\(=x^4-5x^2+x^2-5\)

\(=x^2\left(x^2-5\right)+\left(x^2-5\right)\)

\(=\left(x^2-5\right)\left(x^2+1\right)\)

Bài 2: Tìm x

Ta có: \(x^2-x-6=0\)

\(\Leftrightarrow x^2-3x+2x-6=0\)

\(\Leftrightarrow x\left(x-3\right)+2\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)

Vậy: \(x\in\left\{3;-2\right\}\)

Bài 3:

Ta có: \(\left(n+3\right)^2-\left(n-1\right)^2\)

\(=\left(n+3-n+1\right)\left(n+3+n-1\right)\)

\(=4\cdot\left(2n+2\right)\)

\(=8\left(n+1\right)⋮8\)(đpcm)

20 tháng 9 2020

thank you