Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x^3-7x-6
=x^3-3x^2+3x^2-9x+2x-6
=(x-3)(x^2+3x+2)
=(x-3)[(x^2+x)+(2x+2)]
=(x-3)(x+1)(x+2)
Cho em hỏi làm sao mà từ dấu = thứ nhất ra dấu = thứ hai được vậy ạ
b)\(x^4+6x^3+7x^2-6x+1=x^4+6x^3-2x^2+9x^2-6x+1\)
=\(x^4+\left(6x^3-2x^2\right)+\left(9x^2-6x+1\right)\)
\(=\left(x^2\right)^2-2x^2\left(3x-1\right)+\left(3x-1\right)^2\)
\(=\left(x^2+3x-1\right)^2\)
c)\(x\left(x+4\right)\left(x+6\right)\left(x+10\right)+128\)
\(=\left(x^2+10x\right)\left(x^2+10x+24\right)+128\)
đặt \(x^2+10x+12=z\)
\(=\left(z-12\right)\left(z+12\right)+128=z^2-144+128\)
\(=z^2-16=\left(z-4\right)\left(z+4\right)\)\(=\left(x^2+10x-4+12\right)\left(x^2+10x+4+12\right)\)
\(=\left(x^2+10x+8\right)\left(x^2+10x+16\right)\)
\(=\left(x^2+10x+8\right)\left(x^2+2x+8x+16\right)\)
\(=\left(x^2+10x+8\right)\left[x\left(x+2\right)+8\left(x+2\right)\right]\)
\(=\left(x^2+10x+8\right)\left(x+2\right)\left(x+8\right)\)
1/Đặt Q(x) là thương ta có
\(x^3-7x^2+a=Q\left(x\right).\left(x-2\right)\).Thay x=2 đc
\(8-28+a=0\Leftrightarrow a=20\)
2/a/ĐKXĐ: x khác 2,-3
Có \(M=\frac{x+2}{x+3}-\frac{5}{\left(x-2\right)\left(x+3\right)}-\frac{1}{x-2}\)
\(\Leftrightarrow M=\frac{x^2-4}{\left(x-2\right)\left(x+3\right)}-\frac{5}{\left(x-2\right)\left(x+3\right)}-\frac{x+3}{\left(x-2\right)\left(x+3\right)}\)
\(\Leftrightarrow M=\frac{x^2-4-5-x-3}{\left(x-2\right)\left(x+3\right)}\)
\(\Leftrightarrow M=\frac{x^2-x-12}{\left(x-2\right)\left(x+3\right)}\)
\(\Leftrightarrow M=\frac{\left(x-4\right)\left(x+3\right)}{\left(x-2\right)\left(x+3\right)}\)
\(\Leftrightarrow M=\frac{x-4}{x-2}\)
b/\(M=\frac{x-2-2}{x-2}=1-\frac{2}{x-2}\).Để M nguyên thì \(2⋮x-2\Rightarrow x-2\in\left(+-1,+-2\right)\Rightarrow x\in\left(3,1,4,0\right)\)
\(M=x^6-20x^5-20x^4-20x^3-20x^2-20x+3\)
\(M=x^6-\left(x-1\right)x^5-\left(x-1\right)x^4-\left(x-1\right)x^3-\left(x-1\right)x^2-\left(x-1\right)x+3\)
\(M=x^6-x^6+x^5-x^5+x^4-x^4+x^3-x^3+x^2-x+3\)
\(M=x+3\) (1)
Thay \(x=21\)vào (1) ta được:
\(M=21+3\)
\(M=24\)
Còn câu N bạn tham khảo tại link này nha:
Câu hỏi của Hoang Linh - Toán lớp 8 | Học trực tuyến
Chúc bạn học thật tốt!
1) ta có : \(x^2+5y^2-4xy+2y=3\Leftrightarrow\left(x-2y\right)^2+\left(y+1\right)^2=2\)
\(\Leftrightarrow\left(x-2y\right)^2=2-\left(y+1\right)^2\ge0\) \(\Leftrightarrow2\ge\left(y+1\right)^2\Leftrightarrow-\sqrt{2}\le y+1\le\sqrt{2}\)
\(\Leftrightarrow-\sqrt{2}-1\le y\le\sqrt{2}-1\)
ta lại có : \(\left(y+1\right)^2=2-\left(x-2y\right)^2\ge0\)
\(\Leftrightarrow2\ge\left(x-2y\right)^2\Leftrightarrow-\sqrt{2}\le x-2y\le\sqrt{2}\)
\(\Leftrightarrow-\sqrt{2}+2y\le x\le\sqrt{2}+2y\Leftrightarrow-2-3\sqrt{2}\le x\le-2+3\sqrt{2}\)
vậy \(x_{max}=-2+3\sqrt{2}\)
dâu "=" xảy ra khi \(y=\sqrt{2}-1\)
câu 3 : ta có : \(x^2+2y^2+2xy+7x+7y+10=0\)
\(\Leftrightarrow y^2=-\left(x+y\right)^2-7\left(x+y\right)-10\ge0\)
\(\Leftrightarrow-5\le x+y\le-2\)
\(\Rightarrow S_{max}=-2\) khi \(\left\{{}\begin{matrix}y^2=0\\x+y=-2\end{matrix}\right.\Leftrightarrow y=0;x=-2\)
\(S_{min}=-5\) khi \(\left\{{}\begin{matrix}y^2=0\\x+y=-5\end{matrix}\right.\Leftrightarrow y=0;x=-5\)
bài này có trong đề thi hsg trường mk :)
Từng sau đăng bài bạn chịu khó đừng chụp ngang nhé, mình vẹo cả cổ để đọc được bài. Cố gắng trình bày latex càng tốt.
\(M=3x^2-7x=3\left(x^2-2.x.\frac{7}{6}+\left(\frac{7}{6}\right)^2-\left(\frac{7}{6}\right)^2\right)\)
\(=3\left(x-\frac{7}{6}\right)^2-\frac{49}{12}\ge-\frac{49}{12}\)
Đẳng thức xảy ra khi x = 7/6
N = \(\left(x^4-7x^2+6\right)=x^4-2.x^2.\frac{7}{2}+\left(\frac{7}{2}\right)^2-\left(\frac{7}{2}\right)^2+6\)
\(=\left(x^2-\frac{7}{2}\right)^2-\frac{25}{4}\ge-\frac{25}{4}\)
đẲng thức xảy ra khi \(x^2=\frac{7}{2}\Leftrightarrow x=\pm\sqrt{\frac{7}{2}}\)
Lời giải:
a, Ta có:
M = 3x2 - 7x = 3 . ( x2 - \(\frac{7}{3}\)x ) = 3 . [ x2 - 2.\(\frac{7}{6}\)x + \(\left(\frac{7}{6}\right)^2\) - \(\left(\frac{7}{6}\right)^2\)]
= 3 . [ \(\left(x-\frac{7}{6}\right)^2\) - \(\frac{49}{36}\)]
= 3.\(\left(x-\frac{7}{6}\right)^2\) - \(\frac{49}{12}\) ≥ - \(\frac{49}{12}\) . Vì: 3.\(\left(x-\frac{7}{6}\right)^2\) ≥ 0 ∀x => Mmin = - \(\frac{49}{12}\)
<=> 3.\(\left(x-\frac{7}{6}\right)^2\) = 0
<=> \(\left(x-\frac{7}{6}\right)^2\) = 0
<=> \(x-\frac{7}{6}\) = 0
<=> x = \(\frac{7}{6}\)
Vây: Mmin = -\(\frac{49}{12}\) tại x = \(\frac{7}{6}\).
b, Ta có:
N = x4 - 7x2 + 6 = [(x2)2 - 2 . \(\frac{7}{2}\) . x2 + \(\left(\frac{7}{2}\right)\)2 ] - [\(\left(\frac{7}{2}\right)\)2 - 6]
= ( x2 - \(\frac{7}{2}\))2 - \(\frac{25}{4}\) ≥ -\(\frac{25}{4}\) . Vì: ( x2 - \(\frac{7}{2}\))2 ≥ 0 ∀x => Nmin= -\(\frac{25}{4}\)
<=> ( x2 - \(\frac{7}{2}\))2 = 0
<=> x2 - \(\frac{7}{2}\) = 0
<=> x2 = \(\frac{7}{2}\)
<=> x = \(\sqrt{\frac{7}{2}}\)
Vây: Nmin = - \(\frac{25}{4}\) tại x = \(\sqrt{\frac{7}{2}}\)
Chúc bạn học tốt!Tick cho mình nhé!