Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\left(\dfrac{3}{4}\right)^x.\left(\dfrac{4}{3}\right)^{\dfrac{4}{x}}=\dfrac{9}{16}\)
\(\Rightarrow\left(\dfrac{3}{4}\right)^x.\left(\dfrac{3}{4}\right)^{-\dfrac{4}{x}}=\left(\dfrac{3}{4}\right)^2\)
\(\Rightarrow\left(\dfrac{3}{4}\right)^{x-\dfrac{4}{x}}=\left(\dfrac{3}{4}\right)^2\)
\(\Rightarrow x-\dfrac{4}{x}=2\)
\(\Rightarrow x^2-2x-4=0\)
Viet: \(x_1+x_2=2\)
Chọn B.
Phương trình đã cho tương đương với: x2- 4x+2= x-4 hay x2- 5x + 6= 0
Từ đó; x= 2 hoặc x= 3
Do đó: S= 24+ 34= 97
Bài này e rằng quá khó để tự luận do vấn đề cơ số
Nhưng tinh ý 1 chút thì giải trắc nghiệm đơn giản:
\(\dfrac{\sqrt{x}}{2}-\dfrac{1}{2\sqrt{x}}=\dfrac{x-1}{2\sqrt{x}}\)
Để ý rằng \(x-1-2\sqrt{x}=x-\left(2\sqrt{x}+1\right)\)
Do đó pt luôn có nghiệm thỏa mãn: \(x-2\sqrt{x}-1=0\Rightarrow x=3+2\sqrt{2}\)
Chọn A.
Ta có
Phương trình đã cho thành
đây là phương trình đẳng cấp, ta có thể chia cả hai vế cho b > 0 như sau:
+) TH1.
+) TH2.
Do đó
\(log_7\left(4x^2-4x+1\right)-log_72x+4x^2+1=6x\)
\(\Leftrightarrow log_7\left(4x^2-4x+1\right)+4x^2-4x+1=log_72x+2x\)
\(\Rightarrow4x^2-4x+1=2x\)
\(\Rightarrow...\)
log7(4x2−4x+1)−log72x+4x2+1=6xlog7(4x2−4x+1)−log72x+4x2+1=6x
=log7(4x2−4x+1)+4x2−4x+1=log72x+2x⇔log7(4x2−4x+1)+4x2−4x+1=log72x+2x
=4x2−4x+1=2x⇒4x2−4x+1=2x
= 2x