K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 12 2016

Ta có: x-1 và x+1 là 2 số tự nhiên liên tiếp mà (x-1)(x+1)=8 => x-1=2;x+1=4 => x=3. Khi đó P=-12x2 => P=-12.32=-108

Vây P=-108

1 tháng 12 2016

(x-1)(x+1)=8

=>x2-1=8

=>x2=9

ta co P=-12x2=-12x9=-108

14 tháng 8 2016

Đăng từng bài thôi bạn ơi

14 tháng 8 2016

cj on ruayf hả

16 tháng 9 2020

a) A = x2 + 12x + 39

= ( x2 + 12x + 36 ) + 3

= ( x + 6 )2 + 3 ≥ 3 ∀ x

Đẳng thức xảy ra ⇔ x + 6 = 0 => x = -6

=> MinA = 3 ⇔ x = -6

B = 9x2 - 12x 

= 9( x2 - 4/3x + 4/9 ) - 4

= 9( x - 2/3 )2 - 4 ≥ -4 ∀ x

Đẳng thức xảy ra ⇔ x - 2/3 = 0 => x = 2/3

=> MinB = -4 ⇔ x = 2/3

b) C = 4x - x2 + 1

= -( x2 - 4x + 4 ) + 5

= -( x - 2 )2 + 5 ≤ 5 ∀ x

Đẳng thức xảy ra ⇔ x - 2 = 0 => x = 2

=> MaxC = 5 ⇔ x = 2

D = -4x2 + 4x - 3

= -( 4x2 - 4x + 1 ) - 2

= -( 2x - 1 )2 - 2 ≤ -2 ∀ x

Đẳng thức xảy ra ⇔ 2x - 1 = 0 => x = 1/2

=> MaxD = -2 ⇔ x = 1/2

16 tháng 9 2020

Ta có A = x2 + 12x + 39 = (x2 + 12x + 36) + 3 = (x + 6)2 + 3 \(\ge\)3

Dấu "=" xảy ra <=> x + 6 = 0

=> x = -6

Vậy Min A = 3 <=> x = -6

Ta có B = 9x2 - 12x = [(3x)2 - 12x + 4] - 4 =(3x - 2)2 - 4 \(\ge\)-4

Dấu "=" xảy ra <=> 3x - 2 =0

=> x = 2/3

Vậy Min B = -4 <=> x = 2/3

b) Ta có C = 4x - x2 + 1 = -(x2 - 4x - 1) = -(x2 - 4x + 4) + 5 = -(x - 2)2 + 5 \(\le\)5

Dấu "=" xảy ra <=> x - 2 = 0

=> x = 2

Vậy Max C = 5 <=> x = 2

Ta có D = -4x2 + 4x - 3 = -(4x2 - 4x + 1) - 2 = -(2x - 1)2 - 2 \(\le\)-2

Dấu "=" xảy ra <=> 2x - 1 = 0

=> x = 0,5

Vậy Max D = -2 <=> x = 0,5

9 tháng 3 2020

a) \(A=4x^2-12x+100=\left(2x\right)^2-12x+3^2+91=\left(2x-3\right)^2+91\)

Ta có: \(\left(2x-3\right)^2\ge0\forall x\inℤ\)

\(\Rightarrow\left(2x-3\right)^2+91\ge91\)

hay A \(\ge91\)

Dấu "=" xảy ra <=> \(\left(2x-3\right)^2=0\)

<=> 2x-3=0

<=> 2x=3

<=> \(x=\frac{3}{2}\)

Vậy Min A=91 đạt được khi \(x=\frac{3}{2}\)

b) \(B=-x^2-x+1=-\left(x^2+x-1\right)=-\left(x^2+x+\frac{1}{4}-\frac{5}{4}\right)=-\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)

Ta có: \(-\left(x+\frac{1}{2}\right)^2\le0\forall x\)

\(\Rightarrow-\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\le\frac{5}{4}\) hay B\(\le\frac{5}{4}\)

Dấu "=" \(\Leftrightarrow-\left(x+\frac{1}{2}\right)^2=0\)

\(\Leftrightarrow x+\frac{1}{2}=0\)

\(\Leftrightarrow x=\frac{-1}{2}\)

Vậy Max B=\(\frac{5}{4}\)đạt được khi \(x=\frac{-1}{2}\)

9 tháng 3 2020

\(C=2x^2+2xy+y^2-2x+2y+2\)

\(C=x^2+2x\left(y-1\right)+\left(y-1\right)^2+x^2+1\)

\(\Leftrightarrow C=\left(x+y-1\right)^2+x^2+1\)

Ta có: 

\(\hept{\begin{cases}\left(x+y-1\right)^2\ge0\forall x;y\inℤ\\x^2\ge0\forall x\inℤ\end{cases}}\)

\(\Leftrightarrow\left(x+y-1\right)^2+x^2+1\ge1\)

hay C\(\ge\)1

Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x+y-1\right)^2=0\\x^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+y=1\\x=0\end{cases}\Leftrightarrow}\hept{\begin{cases}y=1\\x=0\end{cases}}}\)

Vậy Min C=1 đạt được khi y=1 và x=0

1 tháng 11 2018

\(a,\left(x+1\right)^2+2x\left(x-2\right)=3\left(x+4\right)\left(x+1\right)\)

\(x^2+2x+1+2x^2-4x=3\left(x^2+5x+4\right)\)

\(3x^2-2x+1=3x^2+15x+12\)

\(\Rightarrow3x^2-2x+1-3x^2-15x-12=0\)

\(\Rightarrow-17x=11\)

\(\Rightarrow x=-\frac{11}{17}\)

\(b,M=x^2+12x+50\)

\(M=x^2+2.6.x+6^2+14\)

\(M=\left(x+6\right)^2+14\ge14>0\)

=> M luôn dương 

1 tháng 11 2018

\(\left(x+1\right)^2+2x\left(x-2\right)=3\left(x+4\right)\left(x+1\right).\)

\(\Leftrightarrow x^2+2x+1+2x^2-4x=3.(x^2+x+4x+4)\)

\(\Leftrightarrow x^2-2x+2x^2+1=3x^2+15x+12\)

\(\left(x^2-3x^2+2x^2\right)=\left(15x+2x\right)+12-1\)

\(17x+11=0\)

\(\Leftrightarrow x=\frac{-11}{17}\)

5 tháng 2 2021

1, Ta có: 3-x2+2x=-(x2-2x+1)+4=-(x-1)2+4

vì (x-1)2 luôn lớn hơn hoặc bằng không với mọi x-->-(x-1)nhỏ hơn hoặc bằng 0 với mọi x

vậy giá trị lớn nhất của biểu thức 3-x2+2x là 4

5 tháng 2 2021

các bài giá trị  nhỏ nhất còn lại làm tương tự bạn nhé

chỉ cần đưa về nhân tử chung hoặc hằng đẳng thức là được

29 tháng 9 2015

x=11 => x+1=12

=>x99-12x98+12x97-12x96+. . . +12x3-12x2+12x-1

=x99-(x+1)x98+(x+1)x97-(x+1)96+....+(x+1)x3-(x+1)x2+(x+1)x-1

=x99-x99-x98+x98+x97-x97-x96+...+x4+x3-x3-x2+x2+x-1

=x-1

=11-1

=10

1 tháng 11 2020

\(A=x^3+6x^2+12x+8=\left(x+2\right)^3\)

Thay \(x=98\)vào biểu thức ta được:

\(A=\left(98+2\right)^3=100^3=1000000\)

1 tháng 11 2020

A = x3 + 6x2 + 12x + 8 = ( x + 2 )3

Thế x = 98 ta được : A = ( 98 + 2 )3 = 1003 = 1 000 000