Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(a+\dfrac{1}{36a}=x\)
pt đã cho trở thành 9x2 - 6x + 1 = 0
\(\Leftrightarrow9\left(x^2-\dfrac{2}{3}x+\dfrac{1}{9}\right)=0\)
\(\Leftrightarrow9\left(x-\dfrac{1}{3}\right)^2=0\)
\(\Leftrightarrow x-\dfrac{1}{3}=0\)
\(\Leftrightarrow x=\dfrac{1}{3}=a+\dfrac{1}{36a}=\dfrac{36a^2+1}{36a}\)
\(\Leftrightarrow12a=36a^2+1\)
\(\Leftrightarrow36a^2-12a+1=0\)
\(\Leftrightarrow\left(6a-1\right)^2=0\)
\(\Leftrightarrow6a-1=0\)
\(\Leftrightarrow a=\dfrac{1}{6}\) \(\Rightarrow a=6\)
Theo đề +áp dụng cô si ,ta có:
\(1\ge2a+3b\ge2\sqrt{6ab}\\ \Rightarrow ab\le\frac{1}{24}\)(1)
ÁP dụng cô si cho 2 số ko âm ,ta có:
\(4a^2+9b^2\ge12ab\)(2)
Thay (1),(2) vào ,ta có:
\(36a^2b^2\left(4a^2+9b^2\right)\le36\cdot\frac{1}{24^2}\cdot12\cdot\frac{1}{24}=\frac{1}{32}\)
đến đây thì xong oy
Học tốt nha
^-^
Đặt \(\left(\frac{a-b}{c},\frac{b-c}{a},\frac{c-a}{b}\right)\rightarrow\left(x,y,z\right)\)
Khi đó:\(\left(\frac{c}{a-b},\frac{a}{b-c},\frac{b}{c-a}\right)\rightarrow\left(\frac{1}{x},\frac{1}{y},\frac{1}{z}\right)\)
Ta có:
\(P\cdot Q=\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=3+\frac{y+z}{x}+\frac{z+x}{y}+\frac{x+y}{z}\)
Mặt khác:\(\frac{y+z}{x}=\left(\frac{b-c}{a}+\frac{c-a}{b}\right)\cdot\frac{c}{a-b}=\frac{b^2-bc+ac-a^2}{ab}\cdot\frac{c}{a-b}\)
\(=\frac{c\left(a-b\right)\left(c-a-b\right)}{ab\left(a-b\right)}=\frac{c\left(c-a-b\right)}{ab}=\frac{2c^2}{ab}\left(1\right)\)
Tương tự:\(\frac{x+z}{y}=\frac{2a^2}{bc}\left(2\right)\)
\(=\frac{x+y}{z}=\frac{2b^2}{ac}\left(3\right)\)
Từ ( 1 );( 2 );( 3 ) ta có:
\(P\cdot Q=3+\frac{2c^2}{ab}+\frac{2a^2}{bc}+\frac{2b^2}{ac}=3+\frac{2}{abc}\left(a^3+b^3+c^3\right)\)
Ta có:\(a+b+c=0\)
\(\Rightarrow\left(a+b\right)^3=-c^3\)
\(\Rightarrow a^3+b^3+3ab\left(a+b\right)=-c^3\)
\(\Rightarrow a^3+b^3+c^3=3abc\)
Khi đó:\(P\cdot Q=3+\frac{2}{abc}\cdot3abc=9\)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{abc}\Leftrightarrow\frac{ab+bc+ac}{abc}=\frac{1}{abc}\Leftrightarrow ab+bc+ac=1\)
\(A=\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)=\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2\)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{abc}\Leftrightarrow1=\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right).abc\Leftrightarrow1=bc+ac+ab\)
\(A=\left(bc+ac+ab+a^2\right)\left(bc+ac+ab+b^2\right)\left(bc+ac+ab+c^2\right)\)
\(A=\left[c\left(a+b\right)+a\left(a+b\right)\right]\left[c\left(a+b\right)+b\left(a+b\right)\right]\left[c\left(c+b\right)+a\left(c+b\right)\right]\)
\(A=\left(a+c\right)\left(a+b\right)\left(b+c\right)\left(a+b\right)\left(a+c\right)\left(b+c\right)\)
\(A=\left(a+b\right)^2\left(a+c\right)^2\left(b+c\right)^2\)
3/ Ta có:
\(x+y+z=0\)
\(\Rightarrow x^2=\left(y+z\right)^2;y^2=\left(z+x\right)^2;z^2=\left(x+y\right)^2\)
\(a+b+c=0\)
\(\Rightarrow a+b=-c;b+c=-a;c+a=-b\)
\(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\)
\(\Leftrightarrow ayz+bxz+cxy=0\)
Ta có:
\(ax^2+by^2+cz^2=a\left(y+z\right)^2+b\left(z+x\right)^2+c\left(x+y\right)^2\)
\(=x^2\left(b+c\right)+y^2\left(c+a\right)+z^2\left(a+b\right)+2\left(ayz+bzx+cxy\right)\)
\(=-ax^2-by^2-cz^2\)
\(\Leftrightarrow2\left(ax^2+by^2+cz^2\right)=0\)
\(\Leftrightarrow ax^2+by^2+cz^2=0\)
1/ Đặt \(a-b=x,b-c=y,c-z=z\)
\(\Rightarrow x+y+z=0\)
Ta có:
\(\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)
\(=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2\left(x+y+z\right)}{xyz}\)
\(=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+2\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)=\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2\)
\(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}\)
\(\Leftrightarrow\frac{a+b}{c}+1=\frac{b+c}{a}+1=\frac{c+a}{b}+1\)
\(\Leftrightarrow\frac{a+b+c}{c}=\frac{a+b+c}{a}=\frac{a+b+c}{b}\)
\(\Rightarrow a=b=c\)
\(\Rightarrow\frac{a}{b}=1;\frac{b}{c}=1;\frac{c}{a}=1\)
\(\Rightarrow M=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\left(1+1\right)\left(1+1\right)\left(1+1\right)=2.2.2=8\)
Đặt \(a+\frac{1}{36a}=x\)
pt đã cho trở thành \(9x^2-6x+1=0\)
\(\Leftrightarrow9\left(x^2-\frac{2}{3}x+\frac{1}{9}\right)=0\)
\(\Leftrightarrow9\left(x-\frac{1}{3}\right)^2=0\)
\(\Leftrightarrow x-\frac{1}{3}=0\)
\(\Leftrightarrow x=\frac{1}{3}=a+\frac{1}{36a}=\frac{36a^2+1}{36a}\)
\(\Leftrightarrow12a=36a^2+1\)
\(\Leftrightarrow36a^2-12a+1=0\)
\(\Leftrightarrow\left(6a-1\right)^2=0\)
\(\Leftrightarrow6a-1=0\)
\(\Leftrightarrow a=\frac{1}{6}\Rightarrow a=6\)
Chúc bạn học tốt !!!