K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2019

Giải hpt \(\hept{\begin{cases}\sin\alpha+\cos\alpha=\frac{7}{5}\\\sin^2\alpha+\cos^2\alpha=1\end{cases}}\) ra \(\hept{\begin{cases}\sin\alpha=\frac{4}{5}\\\cos=\frac{3}{5}\end{cases}}\)\(\Rightarrow\)\(\tan\alpha=\frac{4}{3}\)

a, ta có \(\tan\alpha=\frac{\sin\alpha}{\cos\alpha}\)

                  \(\frac{1}{3}\)\(\frac{\sin\alpha}{\cos\alpha}\)

                    \(\cos\alpha\)= 3 \(\sin\alpha\)

ta có \(\frac{\cos\alpha+\sin\alpha}{\cos\alpha-\sin\alpha}\)\(\frac{3\sin\alpha+\sin\alpha}{3\sin\alpha-\sin\alpha}\)\(\frac{4\sin\alpha}{2\sin\alpha}\)\(2\)

#mã mã#

25 tháng 6 2019

a/ Có \(\tan\alpha=\frac{1}{3}\Rightarrow\frac{\sin\alpha}{\cos\alpha}=\frac{1}{3}\Leftrightarrow\cos\alpha=3\sin\alpha\)

Thay vào biểu thức có:

\(\frac{3\sin\alpha+\sin\alpha}{3\sin\alpha-\sin\alpha}=\frac{4\sin\alpha}{2\sin\alpha}=2\)

b/ Có \(\sin\alpha+\cos\alpha=\frac{7}{5}\Rightarrow\sin\alpha=\frac{7}{5}-\cos\alpha\) (1)

\(\sin^2\alpha+\cos^2\alpha=1\) (2)

Thay (1) vào (2) rồi tự thay số vào giải PTB2 để tìm cos và sin

\(\tan\alpha=\frac{\sin\alpha}{\cos\alpha}\)

Thay vào là OK