Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT Minicopski ta có:
\(T=\sqrt{x^4+\frac{1}{x^4}}+\sqrt{y^2+\frac{1}{y^2}}\ge\sqrt{\left(x^2+y\right)^2+\left(\frac{1}{x^2}+\frac{1}{y}\right)^2}\)
\(\ge\sqrt{1^2+\left(\frac{4}{x^2+y}\right)^2}=\sqrt{1+\left(\frac{4}{1}\right)^2}=\sqrt{17}\)
Nên GTNN của T là \(\sqrt{17}\) khi \(\hept{\begin{cases}x=\sqrt{\frac{1}{2}}\\y=\frac{1}{2}\end{cases}}\)
\(A=\sqrt{x^2+\frac{1}{y^2}}+\sqrt{y^2+\frac{1}{x^2}}\ge\sqrt{\frac{2x}{y}}+\sqrt{\frac{2y}{x}}\ge2\sqrt{\frac{\sqrt{2x}}{\sqrt{y}}.\frac{\sqrt{2y}}{\sqrt{x}}}=2\sqrt{2}\) (Cô si 2 lần)
Vậy min A = \(2\sqrt{2}\). Dấu bằng "=" ra khi và chỉ khi x=y= -1 hoặc x=y=1
\(P=\frac{3x-6\sqrt{x}+7}{2\sqrt{x}-2}+\frac{y-4\sqrt{x}+10}{\sqrt{y}-2}\)
\(=\frac{3\left(\sqrt{x}-1\right)}{2}+\frac{4}{2\left(\sqrt{x}-1\right)}+\left(\sqrt{y}-2\right)+\frac{6}{\sqrt{y-1}}\)
\(=\frac{3\left(\sqrt{x}-1\right)}{2}+\frac{3}{2\left(\sqrt{x}-1\right)}+\left(\sqrt{y}-2\right)+\frac{4}{\left(\sqrt{y}-2\right)}+\frac{4}{2\left(\sqrt{y}-2\right)}+\frac{1}{2\left(\sqrt{x}-1\right)}\)
\(\ge2.\sqrt{\frac{3}{2}.\frac{3}{2}}+2\sqrt{4}+\frac{\left(1+2\right)^2}{2\left(\sqrt{x}+\sqrt{y}-3\right)}\)
\(=3+4+\frac{3}{2}=\frac{17}{2}\)
Dấu "=" xảy ra <=> x = 4 và y = 16
2. \(P=x^2-x\sqrt{3}+1=\left(x^2-x\sqrt{3}+\frac{3}{4}\right)+\frac{1}{4}=\left(x-\frac{\sqrt{3}}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)
Dấu '=' xảy ra khi \(x=\frac{\sqrt{3}}{2}\)
Vây \(P_{min}=\frac{1}{4}\)khi \(x=\frac{\sqrt{3}}{2}\)
3. \(Y=\frac{x}{\left(x+2011\right)^2}\le\frac{x}{4x.2011}=\frac{1}{8044}\)
Dấu '=' xảy ra khi \(x=2011\)
Vây \(Y_{max}=\frac{1}{8044}\)khi \(x=2011\)
4. \(Q=\frac{1}{x-\sqrt{x}+2}=\frac{1}{\left(x-\sqrt{x}+\frac{1}{4}\right)+\frac{7}{4}}=\frac{1}{\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{7}{4}}\le\frac{4}{7}\)
Dấu '=' xảy ra khi \(x=\frac{1}{4}\)
Vậy \(Q_{max}=\frac{4}{7}\)khi \(x=\frac{1}{4}\)
Áp dụng BĐT Bunhiacopski ta có:
\(\sqrt{x^2+\frac{1}{x^2}}=\frac{1}{\sqrt{17}}\sqrt{\left(x^2+\frac{1}{x^2}\right)\left(4^2+1^2\right)}\ge\frac{1}{\sqrt{17}}\left(4x+\frac{1}{x}\right)\)
Tương tự:
\(\sqrt{y^2+\frac{1}{y^2}}\ge\frac{1}{\sqrt{17}}\left(4y+\frac{1}{y}\right)\)
Cộng lại ta được:
\(\sqrt{x^2+\frac{1}{x^2}}+\sqrt{y^2+\frac{1}{y^2}}\ge\frac{1}{\sqrt{17}}\left(4x+4y+\frac{1}{x}+\frac{1}{y}\right)\)
\(\ge\frac{1}{\sqrt{17}}\left[4\left(x+y\right)+\frac{4}{x+y}\right]=\frac{1}{\sqrt{17}}\left(16+1\right)=\sqrt{17}\)
Dấu "=" xảy ra tại x=y=2