Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+) nhân từng vế : (xyzt)2=24.12.36.2=20736=>xyzt=144
+)nhân từng vế :xyzt=24.36=864
+)nhân từng vế:xyzt=12.2=24
Vậy bài toán có 3 đáp số là :24;144;864
\(=>x.y.y.z.z.t.t.x=x^2.y^2.z^2.t^2=\left(xyzt\right)^2\)(1)
Mà x.y.y.z.z.t.t.x=24.12.36.2=20736 (2)
Từ (1) và (2) suy ra \(\left(xyzt\right)^2=20736\)
\(=>xyzt=\sqrt{20736}=144\)
k cho mình nhak
Ta có:
\(\left\{\begin{matrix}xy=24\\yz=12\\zt=36\\xt=2\end{matrix}\right.\Rightarrow xxyyzztt=24.12.36.2\)
\(\Rightarrow x^2y^2z^2t^2=24.12.36.2=20736\)
\(\Rightarrow xyzt^2=20736\)
\(\Rightarrow xyzt=\sqrt{20736}=144\)
Vậy \(xyzt=144\)
xy = 24 ; yz = 12 ; zt = 36 ; xt = 2
Nhân xy ; yz; zt ; xt ta được:
xy . yz . zt . xt = 24 . 12 . 36 . 2
x2.y2.z2.t2 = 20736
(x.y.z.t)2 = 20736
Vậy x.y.z.t \(=\sqrt{20736}=144\) hoặc \(x.y.z.t=-\sqrt{20736}=-144\)
Vì \(yt=48;yz=24\) nên \(t=2z\). Thay vào \(zt=32\) có:
\(2z^2=32\Rightarrow z=\pm4\)
Với \(z=4\) có \(t=\dfrac{32}{x}=8;y=\dfrac{24}{z}=6;x=\dfrac{12}{y}=2\)
Với \(z=-4\) có \(t=\dfrac{32}{z}=-8;y=\dfrac{24}{z}=-6;x=\dfrac{12}{y}=-2\)
Vậy bộ \(x;y;z;t\) thỏa mãn là \(2;4;6;8\) và \(-2;-4;-6;-8\)
mk ko viết lại đề nữa nhé
=>(yzt)2=48.24.32
=> yzt = 192
=> y = 6
z = 4
t = 8
=> x = 2
Vậy (x,y,z,t) = (2, 6, 4, 8)
\(xyyzztxt=\left(xyzt\right)^2=20736\Rightarrow xyzt=\sqrt{20736}=144\)