\(f\left(x\right)\)=ax3+bx
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 3 2019

1.a) Theo đề bài,ta có: \(f\left(-1\right)=1\Rightarrow-a+b=1\)

và \(f\left(1\right)=-1\Rightarrow a+b=-1\)

Cộng theo vế suy ra: \(2b=0\Rightarrow b=0\)

Khi đó: \(f\left(-1\right)=1=-a\Rightarrow a=-1\)

Suy ra \(ax+b=-x+b\)

Vậy ...

8 tháng 3 2019

1.b) Y chang câu a!

27 tháng 5 2015

Vì x= 1 là nghiệm của đa thức \(f\left(x\right)\)

=> \(f\left(1\right)=0\)

=> a.1^3+b.1^2+c.1+d=0

=>a+b+c+d=0

Bài 1:

Theo đề, ta có hệ phương trình:

\(\left\{{}\begin{matrix}\left(-1\right)^3+a\cdot\left(-1\right)^2+b\cdot\left(-1\right)-2=0\\1^3+a\cdot1^2+b\cdot1-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a-b=3\\a+b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=-1\end{matrix}\right.\)

Vậy: \(f\left(x\right)=x^3+2x^2-x-2\)

Đặt f(x)=0

\(\Leftrightarrow x^2\left(x+2\right)-\left(x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x-1\right)\left(x+1\right)=0\)

=>Nghiệm còn lại là x=-2

11 tháng 4 2018

Thay x=-2 và x=2 vào ta được:

\(\hept{\begin{cases}8a+4b+2c+d=0\left(1\right)\\-8a+4b-2c+d=0\left(2\right)\end{cases}}\)

Trừ (1) cho (2) được: 16a+4c=0 <=> 4a+c=0 => c=-4a <=> \(\frac{c}{a}=-4\)

Cộng (1) với (2) ta được: 8b+2d=0 <=> d=-4b => \(\frac{d}{b}=-4\)

Đáp số: \(\frac{c}{a}=\frac{d}{b}=-4\)