Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\sqrt{x+m}=t\Rightarrow m=t^2-x\)
Pt trở thành:
\(x^2-2x-t=t^2-x\)
\(\Leftrightarrow x^2-t^2-x-t=0\)
\(\Leftrightarrow\left(x+t\right)\left(x-t-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}-x=t\\x-1=t\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}-x=\sqrt{x+m}\left(x\le0\right)\\x-1=\sqrt{x+m}\left(x\ge1\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-x=m\left(x\le0\right)\left(1\right)\\x^2-3x+1=m\left(x\ge1\right)\left(2\right)\end{matrix}\right.\)
TH1: (1) có nghiệm duy nhất và (2) vô nghiệm (sử dụng đồ thị hoặc BBT)
\(\Rightarrow\left\{{}\begin{matrix}m\ge0\\\left[{}\begin{matrix}m< -\dfrac{5}{4}\\\end{matrix}\right.\end{matrix}\right.\) (ko tồn tại m thỏa mãn)
TH2: (1) vô nghiệm và (2) có nghiệm duy nhất
\(\Rightarrow\left\{{}\begin{matrix}m< 0\\\left[{}\begin{matrix}m=-\dfrac{5}{4}\\m>-1\end{matrix}\right.\end{matrix}\right.\)\(\Rightarrow\left\{-\dfrac{5}{4}\right\}\cup\left(-1;0\right)\)
Điều kiện: x ≥ a
Phương trình thành x 2 − 5 x + 4 = 0 x − a = 0 ⇔ x = 4 x = 1 x = a
+) Nếu a < 1 thì phương trình có ba nghiệm phân biệt x = a , x = 1 , x = 4 nên không thỏa mãn yêu cầu.
+) Nếu 1 ≥ a < 4 thì do điều kiện x ≥ a nên ta loại nghiệm x = 1 , do đó phương trình có hai nghiệm phân biệt x = a , x = 4 (thỏa mãn)
+) Nếu a = 4 thì phương trình có nghiệm duy nhất x = a = 4 (không thỏa mãn).
+) Nếu a > 4 thì do điều kiện x ≥ a nên ta loại hai nghiệm x = 1 , x = 4 , do đó phương trình có nghiệm duy nhất x = a (không thỏa mãn)
Vậy phương trình có 2 nghiệm phân biệt ⇔ 1 ≤ a < 4
Đáp án cần chọn là: B
Pt: x2+4x+m+1 (1)
Ta có △'= 22-1.(m+1)=3-m
a) Pt (1) vô nghiệm ⇔△'<0⇔3-m<0⇔m>3
b) (1) có nghiệm kép ⇔△'=0 ⇔ m=3
c) (1) có nghiệm ⇔ △' ≥ 0 ⇔ m ≤3
d) (1) có 2 nghiệm phân biệt ⇔ △' >0 ⇔m<3
e) (1) có 2 nghiệm trái dấu ⇔ 1.(m+1)< 0⇔m<-1
f) (1) có 2 nghiệm dương phân biệt ⇔ △'>0 , x1+x2 = -b/a>0, x1.x2=c/a>0
⇔m<3, -4>0, m+1>0
⇒ vô nghiệm