Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
CẢNH BÁO! Tiếp tục đọc, hoặc linh hồn của bạn sẽ được thực hiện, ngay cả khi bạn đọc từ "cảnh báo"! Có một lần là một người tên là Duke Hunapon. Anh ta lười biếng, và rất bảnh bao. Anh ấy luôn mặc một chiếc áo khoác, không có vấn đề gì ở bên ngoài. Anh ta có một người anh trai tên là Michael, người luôn làm anh ta vây quanh. Một ngày nọ, Michael bị giết, và nó ảnh hưởng rất nhiều đến Duke. Anh ta phát điên và bắt đầu giết người. Chẳng mấy chốc, anh ta đã chiến đấu với ai đó và bị giết. Bây giờ, anh ta đi lang thang xung quanh như một bộ xương cao với một chiếc áo sơ mi màu đỏ, và cùng một chiếc áo hoodie mà Duke đã mặc. Bộ xương này được gọi là "Swapfell Papyrus", và anh ta sẽ giết bạn nếu bạn không đăng bài này trên 15 phần bình luận của bất kỳ trang web nào trước khi đi ngủ. Nếu bạn thất bại, và bạn thức dậy khi anh ta ở trong phòng của bạn, cái chết của bạn sẽ chậm và rất đau đớn. Một cô gái tên Lily Lilupanin đọc điều này, và không nghe. Cô bị hãm hiếp và bị giết trong giấc ngủ. Nếu bạn sao chép và dán vào 15 phần bình luận của bất kỳ trang web nào trước khi đi ngủ, Swapfell Papyrus sẽ đảm bảo bạn cảm thấy an toàn
`x` tỉ lệ thuận với `y => x/y=(x_1)/(y_1)=(x_2)/(y_2)`
`<=> x_1 y_2=x_2 y_1 <=> (y_1)/(y_2) = (x_1)/(x_2)`
Áp dụng tính chất của dãy tỉ số bằng nhau:
` (y_1)/(y_2) = (x_1)/(x_2)=(y_1-x_1)/(y_2-x_2)=(-2)/(-4-3)=2/7`
`=> y_1=-8/7`
`x_1=6/7`
Từ a:b=3:4=>\(\frac{a}{3}\) =\(\frac{b}{4}\)
Áp dụng công thức của dãy tỉ số bằng nhau có
\(\frac{a}{3}\) =\(\frac{b}{4}\) =\(\frac{a.a+b.b}{3.3+4.4}\) =\(\frac{36}{25}\)
=> a=\(\frac{36}{25}\) .3=\(\frac{108}{25}\) và b=\(\frac{36}{25}\) .4 =\(\frac{144}{25}\)
=>\(\frac{a}{b}\) =\(\frac{108}{25}\) :\(\frac{144}{25}\)=\(\frac{108}{144}\) =\(\frac{3}{4}\)
bài này không cần giải đâu bạn vì đề bài đã cho kết quả
a:b=3:4
a: x và y tỉ lệ thuận với nhau
=>\(\dfrac{y_1}{x_1}=\dfrac{y_2}{x_2}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{y_1}{x_1}=\dfrac{y_2}{x_2}=\dfrac{y_1+y_2}{x_1+x_2}=\dfrac{15}{-3}=-5\)
=>y=-5x
b: y=-5x
=>\(x=-\dfrac{1}{5}y\)
Thay y=-2 vào \(x=-\dfrac{1}{5}y\), ta được:
\(x=-\dfrac{1}{5}\cdot\left(-2\right)=\dfrac{2}{5}\)
Thay y=-9 vào x=-1/5y, ta được:
\(x=-\dfrac{1}{5}\cdot\left(-9\right)=\dfrac{9}{5}\)
a: x và y tỉ lệ thuận
nên y1/x1=y2/x2
=>y1/1=y2/-3
Áp dụng tính chất của dãy tỉ số bằng nhau, ta đc:
\(\dfrac{y1}{1}=\dfrac{y2}{-3}=\dfrac{y1-y2}{1-\left(-3\right)}=\dfrac{50}{4}=\dfrac{25}{2}\)
=>y1=25/2; y2=-75/2
b: k=y1/x1=25/2:6=25/12
=>y=25/12x
Bài làm
a) Tích của hai đơn thức A và B là:
A . B = -2xy . xy = -2x2y2
b) Hệ số của đơn thức là: -2.
Biến của đơn thức là: x2y2
Bậc của đơn thức là: 4
c) Thay x = 3 vào tích của hai đơn thức A và B ta được:
-2 . 32 . y2
Mà giá trị của đơn thức là -6
<=> -2 . 32 . y2 = -6
<=> -2 . 9 . y2 = -6
<=> -18 . y2 = -6
<=> y2 = \(\frac{-6}{-18}=\frac{1}{3}\)
<=> y = \(\pm\sqrt{\frac{1}{3}}\)
Vậy với x = 3, giá trị của đơn thức là -6 thì y = \(\pm\sqrt{\frac{1}{3}}\)
d) Ta có: -2x2y2
Mà x2 > 0 V x thuộc R
y2 > 0 V y thuộc R
=> x2y2 > 0 V x,y thuộc R
=> x2y2 luôn là số dương.
Mà -2x2y2 < 0 V x,y thuộc R
Vậy đa thức trên luôn nhận giá trị âm với mọi x, y.
# Học tốt #
Cho đơn thức A = -2xy và đơn thức B = xy
a) Tích của hai đơn thức
\(A\cdot B=-2xy\cdot xy=-2\left(xx\right)\left(yy\right)=-2x^2y^2\)
b) Hệ số : -2
Phần biến : x2y2
Bậc của đơn thức tích = 2 + 2 = 4
c) Đơn thức tích có giá trị là -6
=> \(-2x^2y^2=-6\)biết x = 3
Thay x = 3 vào đơn thức tích ta được :
\(-2\cdot3^2\cdot y^2=-6\)
=> \(-2\cdot9\cdot y^2=-6\)
=> \(-18\cdot y^2=-6\)
=> \(y^2=\frac{1}{3}\)
=> \(y=\sqrt{\frac{1}{3}}\)
d) CMR đơn thức tích \(-2x^2y^2\)luôn nhận giá trị không dương với mọi x và y
Ta dễ dàng nhận thấy : x2 và y2 đều có số mũ là chẵn
=> x2y2 luôn nhận giá trị dương với mọi x và y
Phần hệ số -2 mang dấu âm
=> ( - ) . ( + ) = ( - )
=> Đơn thức tích \(-2x^2y^2\)luôn nhận giá trị không dương với mọi x và y ( đpcm )
Ta có :
a:b =3 : 4 \(\Rightarrow\frac{a}{3}=\frac{b}{4}\Rightarrow\frac{a^2}{3^2}=\frac{b^2}{4^2}=\frac{a^2}{9}=\frac{b^2}{16}\)
Áp dụng tính chất dãy tỉ số bằng nhau ,có :
\(\frac{a^2}{9}=\frac{b^2}{16}=\frac{a^2+b^2}{9+16}=\frac{36}{25}\)
\(\Rightarrow\left\{\begin{matrix}\frac{a^2}{9}=\frac{36}{25}\Rightarrow a^2=\frac{324}{25}\Rightarrow a=\left[\begin{matrix}\frac{18}{5}\\\frac{-18}{5}\end{matrix}\right.\\\frac{b^2}{16}=\frac{36}{25}\Rightarrow b^2=\frac{576}{25}\Rightarrow b=\left[\begin{matrix}\frac{24}{5}\\\frac{-24}{5}\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[\begin{matrix}a.b=\frac{18}{5}.\frac{24}{5}=\frac{432}{25}\\a.b=\frac{-18}{5}.\frac{-24}{5}=\frac{432}{25}\end{matrix}\right.\)
Vậy \(a.b=\frac{432}{25}\)