Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
n chia hết cho 2
=>n có chữ số tận cùng là 0;2;4;6;8
=>n=10k; n=10k+2;n=10k+4;n=10k+6;n=10k+8
Đặt \(A=n^2-2n\)
\(=n\left(n-2\right)\)
TH1: n=10k
\(A=n\left(n-2\right)=10k\left(10k-2\right)⋮5\)
=>Nhận
TH2: n=10k+2
=>\(A=n\left(n-2\right)=\left(10k+2\right)\left(10k+2-2\right)=10k\left(10k+2\right)⋮5\)
=>Nhận
TH3: n=10k+4
\(A=n\left(n-2\right)\)
\(=\left(10k+4\right)\left(10k+4-2\right)\)
\(=\left(10k+4\right)\left(10k+2\right)\) không chia hết cho 5
=>Loại
TH4: n=10k+6
A=n(n-2)
=(10k+6)(10k+6-2)
=(10k+6)(10k+4) không chia hết cho 5
=>Loại
Th5: n=10k+8
A=n(n-2)
=(10k+8)(10k+8-2)
=(10k+8)(10k+6) không chia hết cho 5
=>Loại
Vậy: n có chữ số tận cùng là 0 hoặc 2
n chia hết cho 2
=>n có chữ số tận cùng là 0;2;4;6;8
=>n=10k; n=10k+2;n=10k+4;n=10k+6;n=10k+8
Đặt A = n 2 − 2 n = n ( n − 2 ) TH1: n=10k A = n ( n − 2 ) = 10 k ( 10 k − 2 ) ⋮ 5
=>Nhận
TH2: n=10k+2
=> A = n ( n − 2 ) = ( 10 k + 2 ) ( 10 k + 2 − 2 ) = 10 k ( 10 k + 2 ) ⋮ 5
=>Nhận
TH3: n=10k+4
A = n ( n − 2 ) = ( 10 k + 4 ) ( 10 k + 4 − 2 ) = ( 10 k + 4 ) ( 10 k + 2 ) không chia hết cho 5
=>Loại TH4: n=10k+6 A=n(n-2) =(10k+6)(10k+6-2) =(10k+6)(10k+4) không chia hết cho 5
=>Loại
Th5: n=10k+8 A=n(n-2) =(10k+8)(10k+8-2) =(10k+8)(10k+6) không chia hết cho 5
=>Loại
Vậy: n có chữ số tận cùng là 0 hoặc 2
vì số chia hết cho 5 là 0 và 5 số chia hết cho 2 có các số tận cùng là các số chẵn
vậy nên chỉ cần tìm các số có các chữ số tận cùng là 0
Chứng minh rằng mọi số tự nhiên n thì n^2+n+6 không chia hết cho 5
gợi ý:
n^2-2n có chữ số tc là 0 hoặc 5
Vì n chia hết cho 2 =>n có cs tận cùng là : 0,2,4,6,8
xét từng Th
n2-n = n*(n-1),
TH1 : n = 0, thỏa mãn, TH2 n-1 chia hết cho 5, suy ra n =6, còn n=1 thì ko thỏa mãn.
Gợi ý : n^2 - 2n có chữ số tận cùng là 0 hoặc 5
Vì n chia hết cho 2 => n có chữ số tận cùng là 0;2;4;6;8
Xét từng TH và lập luận để bớt TH cần xét
cm = phản chứng
giả sử n^2 chia hết cho 5 nhưng n ko chia hết cho 5
=> n chia 5 dư a (0<a <5)
=> n = 5b +a
=> n^2 = 25b^2 + 10ab + a^2 chia hết cho 5
=> a^2 chia hết cho 5 mà 0<a <5
=> vô lý do ko có số nào thỏa mãn
=> giả sử sai
=> n^2 chia hết cho 5 <=> n chia hết cho 5
cm = phản chứng..
ta có n^2 chia hết cho 5.. cần cm n chia hết cho 5
vì vậy giả sử n không cia hết cho 5 khi mà n^2 chia hết 5
mệnh đề đảo là có n chia hết cho 5.. cần cm n^2 chia hết cho 5
Vì \(n⋮2\)nên chữ số tận cùng của n là 1 số chẵn.
Vì \(n^2-n=n\left(n-1\right)⋮5\)do đó n có chữ số tận cùng là 0,5 hay n-1 có chữ số tận cùng là 0,5.Tức là n có chữ số tận cùng là 0,5 ,1,6
Kết hợp 2 kết quả trên \(\Rightarrow\)n có tận cùng là 0 hoặc 6