K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1. Xét x = - 2, thay vào pt ta dc: -1.0 = 4.0 (Hợp lí)

Vậy x = -2 là 1 nghiệm của pt

Xét x \(\ne\)- 2, ta có: x + 1 = 2 - x

<=> 2x = 1 <=> x = 1/2

Vậy S = {1/2; -2}

2. a. \(2\left(m+\frac{3}{5}\right)-\left(m+\frac{13}{5}\right)=5\)

<=> \(2m+\frac{6}{5}-m-\frac{13}{5}=5\)

<=> m = \(\frac{32}{5}\)

b. \(2\left(3m+1\right)+\frac{1}{4}-\frac{2\left(3m-1\right)}{5}+3m+\frac{1}{5}=5\)

<=> \(6m+2+\frac{1}{4}-\frac{6m-2}{5}+3m+\frac{1}{5}=5\)

<=> \(6m-\frac{6m-2}{5}+3m=5-2-\frac{1}{4}-\frac{1}{5}\)

<=> \(9m-\frac{6m-2}{5}=\frac{51}{20}\)

<=> \(\frac{45m-6m+2}{5}=\frac{51}{20}\)

<=> \(20\left(39m+2\right)=51.5\)

<=> 780m + 40 = 255

<=> 780m = 215

<=> m = \(\frac{43}{156}\)

10 tháng 3 2020

thanks

6 tháng 6 2023

Ta có:

\(y'=x^2-2mx+m^2-4\)

\(y''=2x-2m,\forall x\in R\)

Để hàm số \(y=\dfrac{1}{3}x^3-mx^2+\left(m^2-4\right)x+3\) đạt cực đại tại x = 3 thì:

\(\left\{{}\begin{matrix}y'\left(3\right)=0\\y''\left(3\right)< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m^2-6m+5=0\\6-2m< 0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}m=1,m=5\\m>3\end{matrix}\right.\Leftrightarrow m=5\)

=> B.

AH
Akai Haruma
Giáo viên
28 tháng 10 2017

Lời giải:

Có \(f(x)=x-m^2+\frac{m}{x+1}\Rightarrow f'(x)=1-\frac{m}{(x+1)^2}\)

Do $m$ dương nên

\(f'(x)=0\Leftrightarrow (x+1)^2=m\Rightarrow x=\sqrt{m}-1\) hoặc \(x=-\sqrt{m}-1\) (TH này loại vì \(x\geq 0\))

Giờ ta chỉ cần thử giá trị của hàm tại những điểm đặc biệt thôi, vì giá trị cực trị bao giờ cũng xuất hiện ở những điểm đặc biệt của x

\(f(0)=-m^2+m=-2\Leftrightarrow m=2\)

\(f(1)=1-m^2+\frac{m}{2}=-2\Leftrightarrow m=2\)

\(f(\sqrt{m}-1)=\sqrt{m}-1-m^2+\frac{m}{\sqrt{m}-1}=-2\), em shift solve để giải thu được \(m=2,6.....\)

Đến đây theo thông thường ta phải thử lại giá trị của $m$ để tìm đáp án đúng nhất. Nhưng do chỉ tìm giá trị gần nhất thôi nên dễ thấy $m$ gần giá trị $3$ nhât, chọn đáp án B.

AH
Akai Haruma
Giáo viên
13 tháng 6 2018

Lời giải:

Ta có \(4^x-2m.2^x+(2m^2+5)=0\)

Coi \(2^x=a\) thì pt chuyển về pt bậc 2:

\(a^2-2ma+(2m^2+5)=0(*)\)

Ta thấy \(\Delta'=m^2-(2m^2+5)=-(m^2+5)<0\), do đó pt $(*)$ vô nghiệm, tức là không tồn tại $a$, kéo theo không tồn tại $x$

Do đó không tồn tại giá trị nào của $m$ thỏa mãn đkđb

12 tháng 11 2018
20 tháng 4 2017

Đáp án B

10 tháng 5 2017

25 tháng 9 2018

23 tháng 5 2017

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số