Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử cấp số nhân có số hạng đầu \(u_1\) và công bội \(q\)
\(\Rightarrow\) Số thứ 2 và thứ 3 lần lượt là \(u_1q\) và \(u_1q^2\)
Từ dữ kiện thứ 1 ta có: \(2\left(u_1q+2\right)=u_1+u_1q^2\)
\(\Rightarrow u_1\left(q^2-2q+1\right)=4\) (1)
Từ dữ kiện thứ 2 ta có: \(u_1\left(u_1q^2+9\right)=\left(u_1q+2\right)^2\)
\(\Rightarrow\left(u_1q\right)^2+9u_1=\left(u_1q\right)^2+4u_1q+4\)
\(\Leftrightarrow u_1\left(9-4q\right)=4\) (2)
Chia vế cho vế (1) và (2):
\(\Rightarrow q^2-2q+1=9-4q\)
\(\Leftrightarrow q^2+2q-8=0\Rightarrow\left[{}\begin{matrix}q=2\Rightarrow u_1=4\\q=-4\Rightarrow u_1=\dfrac{4}{25}\end{matrix}\right.\)
Chọn B
lim x → 0 f x = lim x → 0 x + 4 − 4 − x x = lim x → 0 x + 4 − 4 + x x x + 4 − 4 − x = lim x → 0 2 x + 4 − 4 − x = 1 2
Để hàm số f(x) liên tục tại x=0 thì f 0 = 1 2
Lập phương trình
Gọi số trang là: x {hỏi cái gì đắt cái đó làm ẩn}
gọi số trang đọc theo đọc được theo từng ngày là: a[1,2,3]
thì ta có hệ phương trình:\(\left\{\begin{matrix}a_1+5=\frac{1}{5}x\\a_2-7=\left(x-a_1\right)\\a_3=\frac{2}{5}\left[x-\left(a_1+a_2\right)\right]\\a_4=\frac{2}{3}\left[x-\left(a_1+a_2+a_3\right)\right]\end{matrix}\right.\)
Thiếu 1 pt: \(\left(a_1+a_2+a_3+a_4+41\right)=x\) {không vào sửa được-> viết ngoài hệ}
Như vậy ta có hệ 5 pt 5 ẩn => đủ để tìm x, (bạn tự làm)
đọc lại đề nhầm ngày thứ 4 đọc hết quyển truyện {tương còn để lại 41}
do vây--> a4=2/3[...]+41
Phuowfg trình bên ngoài hệ còn (a1+a2+a3+a4)=x
Đáp án là D
Do a, b, c là ba số liên tiếp của một cấp số cộng có công sai là 2
nên b = a + 2, c = a + 4
a + 1, a + 3, a + 7 là ba số liên tiếp của một cấp số nhân
⇔ a + 1 a + 7 = a + 3 2
⇔ a = 1
Với a = 1 ta có b = 3 c = 5
Suy ra a + b + c = 9
Cây cao nhất với kiểu gene AABB có chiều cao là: \(100+5\cdot4=120\left(cm\right)\)
Gọi 3 số cần tìm lần lượt là: \({u_{n - 1}},\;{u_n},\;{u_{n + 1}}\)
Theo tính chất của cấp số cộng ta có: \({u_{n - 1}} + {u_{n + 1}} = 2{u_n}\)
Mà đề bài: \({u_{n - 1}} + {u_n} + {u_{n + 1}} = 21\) suy ra \(3{u_n} = 21\;\)
\(\begin{array}{l} \Leftrightarrow {u_n} = 7\\ \Leftrightarrow \left\{ \begin{array}{l}{u_{n - 1}} = {u_n} - d = 7 - d\\{u_{n + 1}} = {u_n} + d = 7 + d\end{array} \right.\end{array}\)
Lần lượt cộng thêm các số 2, 3, 9 vào 3 số ta được: \({u_{n - 1}} + 2,\;{u_n} + 3,\;{u_{n + 1}} + 9\) hay \(9 - d,\;10,\;16 + d\)
Theo tính chất của cấp số nhân ta có:
\(\begin{array}{l}\left( {9 - d} \right)\left( {16 + d} \right) = {10^2}\\ \Leftrightarrow {d^2} + 7d - 44 = 0\\ \Leftrightarrow \left[ \begin{array}{l}d = - 11\\d = 4\end{array} \right.\end{array}\)
Vậy 3 số cần tìm là: 18; 7; -4 hoặc 3; 7; 11.
a) Nếu a và b cắt nhau tại O thì: \(0^\circ \le \left( {a,b} \right) \le 90^\circ \)
b) Nếu a // b thì không có góc tạo bởi a và b
c) Nếu a và b trùng nhau thì góc giữa a và b bằng \(0^\circ \)