K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
22 tháng 12 2020

Giả sử cấp số nhân có số hạng đầu \(u_1\) và công bội \(q\)

\(\Rightarrow\) Số thứ 2 và thứ 3 lần lượt là \(u_1q\) và \(u_1q^2\)

Từ dữ kiện thứ 1 ta có: \(2\left(u_1q+2\right)=u_1+u_1q^2\) 

\(\Rightarrow u_1\left(q^2-2q+1\right)=4\) (1)

Từ dữ kiện thứ 2 ta có: \(u_1\left(u_1q^2+9\right)=\left(u_1q+2\right)^2\)

\(\Rightarrow\left(u_1q\right)^2+9u_1=\left(u_1q\right)^2+4u_1q+4\)

\(\Leftrightarrow u_1\left(9-4q\right)=4\) (2)

Chia vế cho vế (1) và (2):

\(\Rightarrow q^2-2q+1=9-4q\)

\(\Leftrightarrow q^2+2q-8=0\Rightarrow\left[{}\begin{matrix}q=2\Rightarrow u_1=4\\q=-4\Rightarrow u_1=\dfrac{4}{25}\end{matrix}\right.\)

10 tháng 3 2019

4 tháng 1 2020

Chọn B

lim x → 0 f x = lim x → 0 x + 4 − 4 − x x = lim x → 0 x + 4 − 4 + x x x + 4 − 4 − x = lim x → 0 2 x + 4 − 4 − x = 1 2

Để hàm số f(x) liên tục tại x=0 thì  f 0 = 1 2

21 tháng 2 2017

Lập phương trình

Gọi số trang là: x {hỏi cái gì đắt cái đó làm ẩn}

gọi số trang đọc theo đọc được theo từng ngày là: a[1,2,3]

thì ta có hệ phương trình:\(\left\{\begin{matrix}a_1+5=\frac{1}{5}x\\a_2-7=\left(x-a_1\right)\\a_3=\frac{2}{5}\left[x-\left(a_1+a_2\right)\right]\\a_4=\frac{2}{3}\left[x-\left(a_1+a_2+a_3\right)\right]\end{matrix}\right.\)

Thiếu 1 pt: \(\left(a_1+a_2+a_3+a_4+41\right)=x\) {không vào sửa được-> viết ngoài hệ}

Như vậy ta có hệ 5 pt 5 ẩn => đủ để tìm x, (bạn tự làm)

21 tháng 2 2017

đọc lại đề nhầm ngày thứ 4 đọc hết quyển truyện {tương còn để lại 41}

do vây--> a4=2/3[...]+41

Phuowfg trình bên ngoài hệ còn (a1+a2+a3+a4)=x

30 tháng 12 2019

Đáp án là D

Do a, b, c là ba số liên tiếp của một cấp số cộng có công sai là 2

nên b = a + 2, c = a + 4

a + 1, a + 3, a + 7 là ba số liên tiếp của một cấp số nhân

⇔ a + 1 a + 7 = a + 3 2

⇔ a = 1

Với  a = 1 ta có  b = 3 c = 5

Suy ra  a + b + c = 9

25 tháng 8 2017

HQ
Hà Quang Minh
Giáo viên
25 tháng 8 2023

Cây cao nhất với kiểu gene AABB có chiều cao là: \(100+5\cdot4=120\left(cm\right)\)

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

Gọi 3 số cần tìm lần lượt là: \({u_{n - 1}},\;{u_n},\;{u_{n + 1}}\)

Theo tính chất của cấp số cộng ta có: \({u_{n - 1}} + {u_{n + 1}} = 2{u_n}\)

Mà đề bài: \({u_{n - 1}} + {u_n} + {u_{n + 1}} = 21\)  suy ra \(3{u_n} = 21\;\)

  \(\begin{array}{l} \Leftrightarrow {u_n} = 7\\ \Leftrightarrow \left\{ \begin{array}{l}{u_{n - 1}} = {u_n} - d = 7 - d\\{u_{n + 1}} = {u_n} + d = 7 + d\end{array} \right.\end{array}\)

Lần lượt cộng thêm các số 2, 3, 9 vào 3 số ta được: \({u_{n - 1}} + 2,\;{u_n} + 3,\;{u_{n + 1}} + 9\) hay \(9 - d,\;10,\;16 + d\)

Theo tính chất của cấp số nhân ta có:

\(\begin{array}{l}\left( {9 - d} \right)\left( {16 + d} \right) = {10^2}\\ \Leftrightarrow {d^2} + 7d - 44 = 0\\ \Leftrightarrow \left[ \begin{array}{l}d =  - 11\\d = 4\end{array} \right.\end{array}\)      

Vậy 3 số cần tìm là: 18; 7; -4 hoặc 3; 7; 11.

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

a)     Nếu a và b cắt nhau tại O thì: \(0^\circ  \le \left( {a,b} \right) \le 90^\circ \)

b)    Nếu a // b thì không có góc tạo bởi a và b

c)     Nếu a và b trùng nhau thì góc giữa a và b bằng \(0^\circ \)