K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
24 tháng 10 2018

Lời giải:

Với $m=m_0$ thì:

\(f(x)=x^3+(m_0^2-1)x^2+2x+m_0-1\)

Vì hàm $f(x)$ là hàm lẻ nên: \(f(-x)=-f(x)\) với mọi \(x;-x\in \) TXĐ

\(\Leftrightarrow (-x)^3+(m_0^2-1)(-x)^2+2(-x)+m_0-1=-[x^3+(m_0^2-1)x^2+2x+m-1]\)

\(\Leftrightarrow (m_0^2-1)x^2+m_0-1=-(m_0^2-1)x^2-(m_0-1)\)

\(\Leftrightarrow (m_0^2-1)x_0^2+m_0-1=0\)

\(\Leftrightarrow (m_0-1)[(m_0+1)x_0^2+1]=0\)

Vì điều trên đúng với mọi $x;-x\in$ TXĐ nên \(m_0-1=0\Rightarrow m_0=1\)