Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn D
Ta có, .
Tổng các hệ số trong khai triển ( 5 x - 1 ) n bằng 2 100 nên ta có phương trình:
.
Vậy ( 5 x - 1 ) n .
Xét số hạng chứa x 3 thì 50 - k = 3 => k = 47.
=> Hệ số của số hạng chứa x 3 là: .
Xét khai triển:
\(\left(1+x\right)^n=C_n^0+C_n^1x+C_n^2x^2+...+C_n^nx^n\)
\(\Leftrightarrow x\left(1+x\right)^n=C_n^0x+C_n^1x^2+C_n^2x^3+...+C_n^nx^{n+1}\)
Đạo hàm 2 vế:
\(\left(1+x\right)^n+nx\left(1+x\right)^{n-1}=C_n^0+2C_n^1x+3C_n^2x^2+...+\left(n+1\right)C_n^nx^n\)
Thay \(x=1\)
\(\Rightarrow2^n+n.2^{n-1}=1+2C_n^1+3C_n^2+...+\left(n+1\right)C_n^n\)
\(\Rightarrow2^{n-1}\left(2+n\right)-1=111\)
\(\Rightarrow2^{n-1}\left(2+n\right)=112=2^4.7\)
\(\Rightarrow n=5\)
\(\left(x^2+\dfrac{2}{x}\right)^5=\sum\limits^5_{k=0}C_5^kx^{2k}.2^{5-k}.x^{k-5}=\sum\limits^5_{k=0}C_5^k.2^{5-k}.x^{3k-5}\)
\(3k-5=4\Rightarrow k=3\Rightarrow\) hệ số: \(C_5^3.2^2\)