K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
15 tháng 4 2022

\(\Leftrightarrow\left(2x-3y\right)^2+xy=\left(xy\right)^2\)

\(\Leftrightarrow\left(2x-3y\right)^2=xy\left(xy-1\right)\)

Do \(xy\left(xy-1\right)\) là 2 số nguyên liên tiếp nên tích của chúng là SCP khi và chỉ khi: \(\left[{}\begin{matrix}xy=0\\xy=1\end{matrix}\right.\) 

TH1: \(xy=0\Rightarrow4x^2+9y^2=0\Rightarrow x=y=0\)

TH2: \(xy=1\Rightarrow\left(x;y\right)=\left(1;1\right);\left(-1;-1\right)\) thế vào pt đầu đều ko thỏa mãn

15 tháng 4 2022

Em cám ơn thầy Lâm nhiều lắm ạ!

NV
16 tháng 4 2022

Với \(y=1\Rightarrow\dfrac{x^2+x+1}{x+1}\in Z\Rightarrow\dfrac{1}{x+1}\in Z\Rightarrow\) ko tồn tại x nguyên dương thỏa mãn (loại)

Với \(y>1\):

Đặt \(\dfrac{x^2+x+1}{xy+1}=k\Rightarrow x^2-\left(ky-1\right)x+1-k=0\)

\(\Delta=\left(ky-1\right)^2+4\left(k-1\right)\) là số chính phương

Ta có: \(k\ge1\Rightarrow\left(ky-1\right)^2+4\left(k-1\right)\le\left(ky-1\right)^2\)

Đồng thời \(y>1\Rightarrow y\ge2\Rightarrow2ky\ge4k>3\)

\(\Rightarrow\left(ky-1\right)^2+4\left(k-1\right)=\left(ky-2\right)^2+\left(2ky-3\right)+4\left(k-1\right)>\left(ky-2\right)^2\)

\(\Rightarrow\left(ky-2\right)^2< \left(ky-1\right)^2+4\left(k-1\right)\le\left(ky-1\right)^2\)

\(\Rightarrow\left(ky-1\right)^2+4\left(k-1\right)=\left(ky-1\right)^2\)

\(\Rightarrow k=1\Rightarrow\dfrac{x^2+x+1}{xy+1}=1\)

\(\Rightarrow x^2+x=xy\Rightarrow y=x+1\)

\(\Rightarrow y-x=1\)

NV
6 tháng 4 2022

Đặt \(a=p^q+7q^p\)

Nếu p; q đều bằng 2 \(\Rightarrow a=2^2+7.2^2\) là hợp số (ktm)

Nếu p; q cùng lớn hơn 2 \(\Rightarrow p^q\) và \(q^p\) đều lẻ

\(\Rightarrow a=p^q+7q^p\) là số chẵn lớn hơn 2 \(\Rightarrow\) là hợp số (ktm)

\(\Rightarrow\) Có đúng 1 số trong p; q phải bằng 2, số còn lại là SNT lẻ

TH1: \(p=2\Rightarrow a=2^q+7.q^2\)

- Nếu \(q=3\Rightarrow a=2^3+7.3^2=71\) là SNT (thỏa mãn)

- Nếu \(q>3\Rightarrow q^2\equiv1\left(mod3\right)\Rightarrow7q^2\equiv1\left(mod3\right)\)

\(2^q=2^{2k+1}=2.4^k\equiv2\left(mod3\right)\)

\(\Rightarrow a=2^q+7.q^2\equiv2+1\left(mod3\right)\Rightarrow a⋮3\) là hợp số (ktm)

TH2: \(q=2\Rightarrow a=p^2+7.2^p\)

- Nếu \(p=3\Rightarrow a=3^2+7.2^3=65\) ko phải SNT (ktm)

- Nếu \(p>3\Rightarrow p^2\equiv1\left(mod3\right)\)

\(7.2^p=7.2^{2k+1}=14.4^k\equiv2\left(mod3\right)\)

\(\Rightarrow p^2+7.2^p⋮3\) là hợp số (ktm)

Vậy \(\left(p;q\right)=\left(2;3\right)\) là cặp SNT duy nhất thỏa mãn yêu cầu

6 tháng 4 2022

Đây là bài toán rất khó về đồng dư thức, em cám ơn thầy Lâm đã giải rất cẩn thận ạ!

Xét p=2\(\Rightarrow p^4+29=45=3^2.5\), có 6 ước số là SND, loại

Xét p=3\(\Rightarrow p^4+29=110=2.5.11\), có 8 ước số là SND, tm

Xét p=5\(\Rightarrow p^4+29=654=2.3.109\) , có 8 ước số là SND, tm

Xét p\(\ge6\). Do p là SNT nên p có dạng \(6k+1\) hoặc \(6k-1\) (k\(\in N\)*)

TH1: p=6k+1

Khi đó ta có \(p^4+29=\left(6k+1\right)^4+29\equiv1+29\equiv0\left(mod6\right)\)

Ta cũng có: \(p^4+29=\left(6k+1\right)^4+29\equiv0\left(mod5\right)\)

vì \(\left(6k+1\right)⋮5̸\)

\(\Rightarrow p^4+29=6.5.a=2.3.5.a\)(a là STN)\(\Rightarrow p^4+29\) có nhiều hơn 8 ước số  nguyên dương, loại.

TH2: p=6k-1. Chứng minh tương tự ta thấy không có p thoả mãn

\(\Rightarrow p\ge6\) không thoả mãn

Vậy....

NV
6 tháng 4 2022

Nhận xét: với mọi n nguyên thì \(n^2\equiv\left\{0;1;2;4\right\}\left(mod7\right)\)

Giả sử a;b tồn tại 1 số không chia hết cho 7

\(\Rightarrow a^2+b^2\equiv\left\{1;2;3;4;5;6;8\right\}\left(mod7\right)\)

\(\Rightarrow a^2+b^2\) luôn ko chia hết cho 7 (trái với giả thiết)

Vậy điều giả sử là sai hay \(a;b\) đều chia hết cho 7