Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có 3 y − 5 + 2 x − 3 = 0 7 x − 4 + 3 x + y − 1 − 14 = 0 ⇔ 3 y − 15 + 2 x − 6 = 0 7 x − 28 + 3 x + 37 − 3 − 14 = 0 ⇔ 2 x + 3 y = 21 10 x + 3 y = 45
⇔ 3 y = 21 − 2 x 10 x + 21 − 2 x = 45 ⇔ 3 y = 21 − 2 x 8 x = 24 ⇔ x = 3 3 y = 15 ⇔ x = 3 y = 5
Vậy hệ phương trình có nghiệm duy nhất (x; y) = (3; 5)
⇒ x 2 + y 2 = 32 + 52 = 34
Đáp án: B
Điều kiện: x y ≥ 0 x , y ≥ − 1
Đặt S = x + y P = x . y điều kiện S 2 ≥ 4 P hệ phương trình đã cho trở thành:
S − P = 3 S + 2 + 2 S + P + 1 = 16 ⇔ P = S − 3 2 S ≥ 3 2 S + S − 3 2 + 1 = 14 − S ⇔ 3 ≤ S ≤ 14 ; P = S − 3 2 4 S 2 − 5 S + 10 = 196 − 28 S + S 2 ⇔ 3 ≤ S ≤ 14 ; P = S − 3 2 3 S 2 + 8 S − 156 = 0 ⇒ S = 6 P = 9
Hay x + y = 6 x . y = 9 ⇔ x + y = 6 x 2 − 6 x + 9 = 0 ⇒ x = y = 3
Vậy hệ đã cho có nghiệm (x; y) = (3; 3)
Suy ra x + 2y = 9
Đáp án:A
Thay x = −1; y = −2 vào hệ ta có:
3 a − 1 + − 2 = b 2. a − 1 − 2 b − 2 = 3 ⇔ − 3 a − 2 = b − 2 a + 4 b = 3 ⇔ b = − 2 − 3 a − 2 a + 4 − 2 − 3 a = 3 ⇔ b = − 2 − 3 a 14 a = − 11 ⇔ a = − 11 14 b = − 2 − 3. − 11 14 ⇔ a = − 11 14 b = 15 14
Vậy a = − 11 14 ; b = 5 14 thì hệ phương trình có nghiệm x = −1; y = −2
⇒ 14(a – b) = −16
Đáp án: C
Ta có
x + 1 4 − y 2 = x + y + 1 x − 2 2 + y − 1 3 = x + y − 1
⇔ x + 1 − 2 y = 4 x + 4 y + 4 3 x − 6 + 2 y − 2 = 6 x + 6 y − 6
⇔ 3 x + 6 y = − 3 3 x + 4 y = − 2 ⇔ y = − 1 2 x = 0
Thay x = 0; y = − 1 2 vào phương trình (m + 2)x + 7my = m – 225 ta được:
(m + 2).0 + 7m − 1 2 = m – 225 ⇔ 9 2 m = 225 ⇔ m = 50
Đáp án: C
Điều kiện: x ≠ 0; y ≠ 0
Đặt 1 x = a ; 1 y = b khi đó ta có hệ phương trình
a − b = 1 3 a + 4 b = 5 ⇔ a = 1 + b 3 1 + b + 4 b = 5 ⇔ a = 1 + b 7 b = 2 ⇔ b = 2 7 a = 1 + 2 7 ⇔ a = 9 7 b = 2 7
Trả lại biến ta được
1 x = 9 7 1 y = 2 7 ⇔ x = 7 9 y = 7 2 (Thỏa mãn điều kiện)
Khi đó 9 x + 2 y = 9. 7 9 + 2. 7 2 = 14
Đáp án: B