\(\left(n\inℕ^∗;n\ge2\right)\)và \(A=\frac{1}{2!}+...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 4 2018

a)A=n/n+1=n/n+0/1

   B=n+2/n+3=n/n  +  2/3

ta có:0<2/3

=>A<B

11 tháng 4 2017

kb đc 0

11 tháng 4 2017

2 câu đầu tôi làm đc

8 tháng 3 2022

TL :

Ko biết thì đừng làm

Nhớ làm hết , chi tiết mới đc 1 SP

HT

8 tháng 3 2022

rep dẹp hết

18 tháng 6 2019

b) 

Gọi 3 số đó là : a) b) c)

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)là số nguyên

Vì a ; b ; c số tự nhiên \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)là phân số

\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)lớn nhất \(=\frac{1}{1}+\frac{1}{2}+\frac{1}{3}=\frac{11}{6}< 2\)và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)nhỏ nhất \(>0\)

\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)

Vậy 3 số tự nhiên cần tìm là : 2 ; 3 ; 6

18 tháng 6 2019

a) 

\(A=\frac{4}{6}\times10+\frac{6}{10}\times16+\frac{1}{16}\times3+\frac{1}{24}\times7+\frac{1}{28}\times5\)

\(A=\frac{20}{3}+\frac{48}{5}+\frac{3}{16}+\frac{7}{24}+\frac{5}{28}\)

\(A=\frac{11200}{1680}+\frac{16128}{1680}+\frac{315}{1680}+\frac{490}{1680}+\frac{300}{1680}\)

\(A=\frac{26433}{1680}\)

Vậy \(A=\frac{26433}{1680}\)

8 tháng 6 2017

\(A=\frac{3}{2^2}.\frac{8}{3^2}.\frac{15}{4^2}...\frac{2013^2-1}{2013^2}.\frac{2014^2-1}{2014^2}\)

\(A=\frac{1.3.2.4.3.5....2012.2014.2013.2015}{2^2.3^2.4^2...2013^2.2014^2}\)

\(A=\frac{\left(1.2.3...2012.2013\right).\left(3.4.5...2014.2015\right)}{\left(2.3.4...2013.2014\right).\left(2.3.4...2013.2014\right)}\)(nhóm từng số ở trước và sau vào 2 nhóm khác nhau)

\(A=\frac{3.2015}{2014.2}\)

\(A=\frac{6045}{4028}\)

8 tháng 6 2017

\(A=\frac{6045}{4028}\),nha bạn ,chúc bạn hok tốt ,love bạn nhìu ,cách làm giống như Monozono Nanami nha

21 tháng 3 2018

c)1*(1/2-1/3+1/3-1/4+.....+1/91-1/94)

1/2-1/94 ban tu tinh nhe

d)1*(1/1-1/4+1/4-1/7+......+1/91-1/94)

1-1/94 ban tu tinh nhe 

tk nha

21 tháng 3 2018

a) \(\frac{1}{n}-\frac{1}{n+1}\left(n\inℕ^∗\right)\)

\(\Leftrightarrow\frac{n+1}{n\left(n+1\right)}-\frac{n}{n\left(n+1\right)}\Leftrightarrow\frac{n+1-n}{n\left(n+1\right)}=\frac{1}{n\left(n+1\right)}\)

b) \(\frac{1}{n}-\frac{1}{n+3}\left(n\inℕ^∗\right)\)

\(\Leftrightarrow\frac{n+3}{n\left(n+3\right)}-\frac{n}{n\left(n+3\right)}=\frac{n+3-n}{n\left(n+3\right)}=\frac{3}{n\left(n+3\right)}\)

c,d dễ bn tách ra rồi trừ đi