Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi x,y,z là ba cạnh của tam giác (x,y,z > 0)
Gỉa sử x,y,z tỉ lệ thuận với 3;4;5 ta có: x 3 = y 4 = z 5
Thì x là cạnh nhỏ nhất và z là cạnh lớn nhất của tam giác . Khi đó theo bài ta có x + z - y = 16
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
x 3 = y 4 = z 5 = x + y − z 3 − 4 + 5 = 16 4 = 4
Do đó x = 4.3 = 12
Vậy cạnh nhỏ nhất của tam giác là 12m
Đáp án cần chọn là B
Gọi x,y,z là ba cạnh của tam giác (x,y,z > 0)
Gỉa sử x,y,z tỉ lệ thuận với 3 ;5;7 ta có: x 3 = y 5 = z 7
Thì x là cạnh nhỏ nhất và z là cạnh lớn nhất của tam giác . Khi đó theo bài ta có x + z - y = 20
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
x 3 = y 5 = z 7 = x + y − z 3 − 5 + 7 = 20 5 = 4
Do đó x = 4.3 = 12
Vậy cạnh nhỏ nhất của tam giác là 12m
Đáp án cần chọn là B
Gọi độ dài 3 cạnh của tam giác lần lượt là x, y, z (đơn vị: m)
Ba cạnh tỉ lệ với 3; 4; 5 => \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)
Cạnh lớn nhất hơn cạnh nhỏ nhất 6m => z - x = 6.
Theo tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{z-x}{5-3}=\frac{6}{2}=3\)
\(\frac{x}{3}=3\Rightarrow x=3.3=9\)
\(\frac{y}{4}=3\Rightarrow y=3.4=12\)
\(\frac{z}{5}=3\Rightarrow z=3.5=15\)
Vậy, độ dài mỗi cạnh của tam giác lần lượt là 9; 12; 15 (m)
@Nghệ Mạt
#cua
Giải:
Gọi 3 cạnh của tam giác ABC lần lượt là a, b, c ( a > b > c > 0 )
Ta có: \(\frac{a}{5}=\frac{b}{4}=\frac{c}{3}\) và a - c = 10
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{5}=\frac{b}{4}=\frac{c}{3}=\frac{a-c}{5-3}=\frac{10}{2}=5\)
+) \(\frac{a}{5}=5\Rightarrow a=25\)
+) \(\frac{b}{4}=5\Rightarrow b=20\)
+) \(\frac{c}{3}=5\Rightarrow c=15\)
Vậy 3 cạnh của tam giác lần lượt là 15 cm, 20 cm và 25 cm
Gọi độ dài các cạnh của tam giác lần lượt là a , b , c (theo thứ tự nhỏ đến lớn)
Theo đề bài , ta có :
\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\) và c + 10 = a + b
Áp dụng tính chất dãy tỉ số bằng nhau , ta có:
\(\frac{a}{3}=\frac{b}{4}=\frac{a+b}{3+4}=\frac{c+10}{7}\)
=> \(\frac{c+10}{7}=\frac{c}{5}\)
=> 5(c + 10) = 7c
=> 5c + 50 = 7c
=> 50 = 2c
=> c = 25
=> a + b = 25 + 10 = 35
Áp dụng tính chất dãy tỉ số , ta có :
\(\frac{a}{3}=\frac{b}{4}=\frac{a+b}{3+4}=\frac{35}{7}=5\)
=> a = 3.5 = 15
b = 4.5 = 20
Gọi độ dài 3 cạnh tam giác lần lượt là x;y;z
Do độ dài các cạnh tỉ lệ với 3;5;7 nên: \(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{7}\)
Do cạnh lớn nhất dài hơn cạnh nhỏ nhất 40m nên: \(z-x=40\)
Áp dụng tính chất tỉ lệ thức:
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{7}=\dfrac{z-x}{7-3}=\dfrac{40}{4}=10\)
\(\Rightarrow\left\{{}\begin{matrix}x=3.10=30\\y=5.10=50\\z=7.10=70\end{matrix}\right.\)
Vậy độ dài 3 cạnh tam giác là 30m, 50m, 70m
gọi độ dài mỗi cạnh là x,y,z
vì x,y,z thỉ lệ thuận 2;5;9
\(\Rightarrow\)\(\frac{x}{2}=\frac{y}{5}=\frac{z}{9}\)
áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{2}=\frac{y}{5}=\frac{z}{9}=\frac{z-x}{9-2}=\frac{14}{7}=2\)
từ \(\frac{x}{2}=2\Rightarrow x=4\)
\(\frac{y}{5}=2\Rightarrow y=10\)
\(\frac{z}{9}=2\Rightarrow z=18\)
vậy x = 4; y = 10; z = 18.
Gọi độ dài 3 cạnh của tam giác đó lần lượt là a,b,c (m) (c>b>a>0)
Theo bài ra ta có:
a:b:c=2:5:9⇒a2=b5=c9a:b:c=2:5:9⇒a2=b5=c9
c−a=14c−a=14. Áp dụng tính chất dãy tỉ số bằng nhau ta có:
a2=b5=c9=c−a9−2=147=2a2=b5=c9=c−a9−2=147=2
⇒⎧⎩⎨⎪⎪a2=2⇒a=2⋅2=4b5=2⇒b=2⋅5=10c9=2⇒c=2⋅9=18⇒{a2=2⇒a=2⋅2=4b5=2⇒b=2⋅5=10c9=2⇒c=2⋅9=18 (thỏa mãn)
Vậy độ dài 3 cạnh của tam giác đó lần lượt là 4m; 10m; 18m
Gọi a(m); b(m) và c(m) lần lượt là độ dài ba cạnh của tam giác(Điều kiện: a>0; b>0; c>0 và a<b<c)
Vì độ dài ba cạnh tỉ lệ với 3;4;5 nên a:b:c=3:4:5
hay \(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}\)
Vì cạnh lớn nhất dài hơn cạnh nhỏ nhất là 6m nên c-a=6
Áp dụng tính chất của dãy tĩ số bằng nhau, ta được:
\(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}=\dfrac{c-a}{5-3}=\dfrac{6}{2}=3\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{a}{3}=3\\\dfrac{b}{4}=3\\\dfrac{c}{5}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=9\left(nhận\right)\\b=12\left(nhận\right)\\c=15\left(nhận\right)\end{matrix}\right.\)
Vậy: Độ dài ba cạnh của tam giác đó lần lượt là 9m; 12m và 15m
Gọi a (m), b (m), c (m) lần lượt là độ dài ba cạnh của tam giác (a, b, c > 0)
Do độ dài ba cạnh tỉ lệ thuận với 3; 4; 5 nên:
a/3 = b/4 = c/5
Do tổng độ dài cạnh lớn nhất và cạnh nhỏ nhất là 40 m nên:
a + c = 40
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
a/3 = b/4 = c/5 = (a + c)/(3 + 5) = 40/8 = 5
a/3 = 5 ⇒ a = 5.3 = 15 (nhận)
b/4 = 5 ⇒ b = 5.4 = 20 (nhận)
c/5 = 5 ⇒ c = 5.5 = 25 (nhận)
Vậy độ dài ba cạnh của tam giâc cần tìm là: 15 m, 20 m, 25 m