Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do đa thức có nghiệm nên ta gọi k là một ngiệm của đa thức đó
Do P(x) là đa thức bậc ba nên \(P\left(x\right)=\left(x-k\right)\left(x^2+mx+n\right)\)
\(=x^3+mx^2+xn-kx^2-kmx-kn\)
\(=x^3+\left(m-k\right)x^2+\left(n-km\right)x-kn\)
Đồng nhất hệ số, ta được: \(\hept{\begin{cases}m-k=a\\n-km=b\\-kn=c\end{cases}}\)
Thay \(\hept{\begin{cases}m-k=a\\n-km=b\\-kn=c\end{cases}}\)vào hệ thức \(a+2b+4c=-\frac{1}{2}\),ta được:
\(\left(m-k\right)+2\left(n-km\right)-4kn=-\frac{1}{2}\)
\(\Leftrightarrow m-k+2n-2km-4kn=-\frac{1}{2}\)
\(\Leftrightarrow k\left(-1-2m-4n\right)+\left(m+2n\right)=-\frac{1}{2}\)
\(\Leftrightarrow2k\left(-1-2m-4n\right)+2\left(m+2n\right)=-1\)
\(\Leftrightarrow2k\left(-1-2m-4n\right)=\left(-1-2m-4n\right)\)
\(\Rightarrow2k=1\Rightarrow k=\frac{1}{2}\)
Vậy 1 nghiệm của đa thức là \(\frac{1}{2}\)
a=-5va b=-3.vậy 3a-2b=-9. ckac ckan đúg lun mjk moj lam mak
f(x)=q(x).(2x^2-x-6)+(13x+9)
\(2x^2-x-6=\left(x-2\right)\left(x-3\right)\)
f(2)=13.2+9=35
f(3)=39+9=48
\(\left\{\begin{matrix}6.2^4+2^3.a+2^4b-18.2+3=35\\6.3^4+3^3.a+3^2.b-18.3+3=48\end{matrix}\right.\) giải hệ => a,b
Gọi thương trong phép chia
+) f(x) cho (x-1) là g(x)
+) f(x) cho (x-2) là h(x)
Theo đề bài ta có : \(\hept{\begin{cases}f\left(x\right)=\left(x-1\right)\cdot g\left(x\right)+4\left(I\right)\\f\left(x\right)=\left(x-2\right)\cdot h\left(x\right)+13\left(II\right)\end{cases}}\)
Thay x = 1 vào (I) ta được 1 + a + b = 4 => a + b = 3 (1)
Thay x = 2 vào (II) ta được 8 + 2a + b = 13 => 2a + b = 5 (2)
Từ (1) và (2) ta có hệ \(\hept{\begin{cases}a+b=3\\2a+b=5\end{cases}}\Rightarrow\hept{\begin{cases}a=2\\b=1\end{cases}}\)
=> 3a + 2b = 3.2 + 2.1 = 6 + 2 = 8
a) \(8x^3-18x^2+x+6\)
\(=8x^3-16x^2-2x^2+4x-3x+6\)
\(=8x^2\left(x-2\right)-2x\left(x-2\right)-3\left(x-2\right)\)
\(=\left(x-2\right)\left(8x^2-2x-3\right)\)
\(=\left(x-2\right)\left(8x^2-6x+4x-3\right)\)
\(=\left(x-2\right)\left[2x\left(4x-3\right)+\left(4x-3\right)\right]\)
\(=\left(x-2\right)\left(2x+1\right)\left(4x-3\right)\)
=> g(x) có 3 nghiệm là
x-2=0 <=> x=2
2x+1=0 <=> x=-1/2
4x-3=0 <=> x=3/4
vậy đa thức g(x) có nghiệm là x={2;-1/2;3/4}
b) tự làm đi (mk ko bt làm)
a) \(x^2-6x-y^2+9\)
\(=\left(x^2-6x+9\right)-y^2\)
\(=\left(x-3\right)^2-y^2\)
\(=\left(x-3-y\right)\left(x-3+y\right)\)
b) \(9-x^2+2xy-y^2\)
\(=9-\left(x^2-2xy+y^2\right)\)
\(=3^2-\left(x-y\right)^2\)
\(=\left(3-x+y\right)\left(3+x-y\right)\)
A = ax⁴ - 6 + x³ + x² - 13x + bx³
= ax⁴ + (1 + b)x³ + x² - 13x - 6
Do A là đa thức bậc 2
⇒ a = 0 và 1 + b = 0
*) 1 + b = 0
b = -1
⇒ (3a + b)² = (3.0 - 1)² = (-1)² = 1