\(\frac{36}{ab}=a+b\)

Khi đó , giá trị của a...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2016

Câu 4 là 1/99 đó bạn.

22 tháng 1 2017

Cau 4 :1/1599

28 tháng 2 2020

                                                       Bài giải

Ta có : 2 + 4 + 6 + ... + 2m = [ ( 2m - 2 ) : 2 + 1 ] x ( 2m + 2 ) : 2 = m x ( m + 1 )

Thay vào A ta có : \(\frac{m\left(m+1\right)}{m}=m+1\)

Ta có : 2 + 4 + 6 + ... + 2n = [ ( 2n - 2 ) : 2 + 1 ] x ( 2n + 2 ) : 2 = n x ( n + 1 )

Thay vào B ta có : \(\frac{n\left(n+1\right)}{n}=n+1\)

Mà A < B nên \(m+1< n+1\text{ }\Rightarrow\text{ }m< n\)

18 tháng 3 2015

Bài 1: Tính

a) \(1:\) \(\frac{99}{100}:\frac{98}{97}\)\(:\frac{97}{96}:...:\)\(\frac{2}{3}:\frac{1}{2}\)

b) \(\left(\frac{7}{20}+\frac{11}{15}-\frac{15}{12}\right)\)\(:\)\(\left(\frac{11}{20}-\frac{26}{45}\right)\)

c) \(\frac{5-\frac{5}{3}+\frac{5}{9}-\frac{5}{27}}{8-\frac{8}{3}+\frac{8}{9}-\frac{8}{27}}\)\(:\)\(\frac{15-\frac{15}{11}+\frac{15}{121}}{16-\frac{16}{11}+\frac{16}{11}}\)

d) \(\frac{\frac{1}{9}-\frac{5}{6}-4}{\frac{7}{12}-\frac{1}{36}-10}\)

Bài 2: Tìm x:

a) \(\left(x+\frac{1}{4}-\frac{1}{3}\right)\)\(:\)\(\left(2+\frac{1}{6}-\frac{1}{4}\right)\)\(=\frac{7}{46}\)

b) \(\frac{13}{15}-\left(\frac{13}{21}+x\right).\frac{7}{12}=\frac{7}{10}\)

Bài 3: 

Tìm tổng các số nghịch đảo của các số 10; 40; 88; 154; 238; 340.

Bài 4:

Một ô tô chạy trong \(\frac{4}{5}\)giờ được 32 km. Ô tô chạy quãng  đường AB mất \(3\frac{1}{2}\)giờ. Tính vận tốc của ô tô và độ dài quãng đường AB.

Bài 5:

Một người đi từ A đến B mất 45 phút trong khi đó người thứ 2 đi từ B về A mất 30 phút. Nếu hai người cùng khởi hành thì sau bao nhiêu phút thì gặp nhau?

Bài 6:

Cho a; b; c; \(\in\)N*. Chứng tỏ rằng \(\frac{a+b}{c}\)\(+\)\(\frac{b+c}{a}+\frac{c+a}{b}\)\(\ge\)b

10 tháng 9 2020

\(T=\frac{ab}{a+b}\)  ( ĐK : \(a;b\in N;0< a,b< 10\)

\(=\frac{10a+b}{a+b}\) 

\(=1+\frac{9a}{a+b}\) 

\(=1+\frac{9}{\frac{a+b}{a}}\) 

\(=1+\frac{9}{1+\frac{b}{a}}\) 

Để T đạt GTNN thì \(\frac{9}{1+\frac{b}{a}}\) đạt GTNN 

\(\Rightarrow1+\frac{b}{a}\) đạt GTLN 

\(\Rightarrow\) \(\frac{b}{a}\) đạt GTLN 

\(\Rightarrow\) b lớn nhất ; a nhỏ nhất 

\(\Rightarrow a=1;b=9\) 

T=\(\frac{19}{1+9}=\frac{19}{10}=1,9\) 

Vậy GTNN T = 1,9 khi và chỉ khi a = 1 ; b = 9