Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn sửa lại dòng thứ 5 của câu 1 giúp mình:
\(-\frac{1}{24}\left(n-2\right)\left(n-3\right)\left(n+2\right)\left(n-11\right)\)
2)
\(Y_n=\frac{\frac{\left(n+4\right)!}{n!}}{\left(n+2\right)!}-\frac{143}{4.n!}\)
\(=\frac{\left(n+4\right)\left(n+3\right)}{n!}-\frac{143}{4n!}\)
\(=\frac{1}{4n!}\left(2n+19\right)\left(2n-5\right)\)
\(Y_n< 0\)
<=> \(\frac{1}{4n!}\left(2n+19\right)\left(2n-5\right)\)<0
<=> \(\left(2n+19\right)\left(2n-5\right)< 0\)
<=> \(-\frac{19}{2}< n< \frac{5}{2}\)
Đối chiếu với n \(\ge\)1 và n là số tự nhiên
ta có: n = 1 hoặc n = 2
Vậy các số hạng âm của dãy số ( Y_n) là:
\(Y_1=-\frac{63}{4};Y_2=-\frac{23}{8}\)
1) \(X_n=\frac{5}{4}.\frac{\left(n-2\right)!}{\left(n-4\right)!}-\frac{\left(n-1\right)!}{4!\left(n-5\right)!}+\frac{\left(n-1\right)!}{3!\left(n-4\right)!}\)
\(=\frac{5}{4}.\left(n-2\right)\left(n-3\right)-\frac{\left(n-1\right)\left(n-2\right)\left(n-3\right)\left(n-4\right)}{24}+\frac{\left(n-1\right)\left(n-2\right)\left(n-3\right)}{6}\)
= \(\left(n-2\right)\left(n-3\right)\left(\frac{5}{4}-\frac{\left(n-1\right)\left(n-4\right)}{24}+\frac{n-1}{6}\right)\)
= \(\left(n-2\right)\left(n-3\right)\left(-\frac{n^2}{24}+\frac{3n}{8}+\frac{11}{12}\right)\)
= - \(\left(n-2\right)\left(n-3\right)\left(n+2\right)\left(n-11\right)\)
Để \(X_n>0\)
<=> \(\left(n-2\right)\left(n-3\right)\left(n+2\right)\left(n-11\right)\) < 0
<=> n \(\in\left(-2;2\right)\cup\left(3;11\right)\)
Đối chiếu đk n \(\ge\)5
ta có n \(\in\) [ 5; 11 ) và n là số tự nhiên.
Các số hạng dương là:
\(X_5;X_6;...;X_{10}\) ( tự thay vào rồi tính kết quả nhé)
VD: \(X_5=\frac{5}{4}.A^2_3-C^4_4+C^3_4=\frac{21}{2}\)
\(\left(k+1\right)C^k_n=kC^k_n+C^k_n=\dfrac{n!k}{k!\left(n-k\right)!}+C^k_n=\dfrac{\left(n-1\right)!n}{\left(k-1\right)!\left(n-1-k+1\right)!}+C^k_n=nC^{k-1}_{n-1}+C^k_n\)
\(\Rightarrow C^0_{2000}+\sum\limits^{2000}_{k=1}\left(k+1\right)C^k_{2000}=C^0_{2000}+\sum\limits^{2000}_{k=1}\left(2000C^{k-1}_{1999}+C^k_{2000}\right)=2000\sum\limits^{2000}_{k=1}C^{k-1}_{1999}+\sum\limits^{2000}_{k=0}C^k_{2000}\)
\(=2000.2^{1999}+2^{2000}=2^{1999}.2002\)
\(\sum_{k=1}^nC^k_{2n+1}=2^{20}-1\)
\(\frac{\sum_{k=1}^n\left(2C^k_{2n+1}\right)+1+1}{2}=2^{20}\)
\(C^0_{2n+1}+\sum_{k=1}^n\left(C^k_{2n+1}+C_{2n+1}^{2n+1-k}\right)+C^{2n+1}_{2n+1}=2^{21}\)
\(\sum_{k=0}^{2n+1}C^k_{2n+1}=2^{21}\)
\(\Rightarrow2n+1=21\Rightarrow n=10\)
Số hạng chứa \(x^{26}\) có dạng là:
\(C^k_{10}.\left(\frac{1}{x^4}\right)^k.\left(x^7\right)^{10-k}\Rightarrow-4k+7.\left(10-k\right)=26\)
\(\Rightarrow k=4\)
hệ số của \(x^{26}\) là:
\(C^4_{10}=210\)
Xét khai triển:
\(\left(x+1\right)^n=C_n^0+C_n^1x+C_n^2x^2+...+C_n^nx^n\)
\(\Leftrightarrow x\left(x+1\right)^n=C_n^0.x+C_n^1x^2+C_n^2x^3+...+C_n^nx^{n+1}\)
Thay \(n=2000\) ta được:
\(x\left(x+1\right)^{2000}=C_{2000}^0x+C_{2000}^1x^2+C_{2000}^2x^3+...+C_{2000}^{2000}x^{2001}\)
Đạo hàm 2 vế:
\(\left(x+1\right)^{2000}+2000x\left(x+1\right)^{1999}=C_{2000}^0+2C_{2000}^1x+...+2001C_{2000}^{2000}x^{2000}\)
Thay \(x=1\) ta được:
\(2^{2000}+2000.2^{1999}=C_{2000}^0+2C_{2000}^1+...+2001.C_{2000}^{2000}\)
\(\Rightarrow S=2^{1999}\left(2+2000\right)=2002.2^{1999}\)