Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^4+2x^2y^2+y^4-3x^2-4y^2+4=1\)
\(\Leftrightarrow\left(x^2+y^2\right)^2-4\left(x^2+y^2\right)+4=1-x^2\)
\(\Leftrightarrow\left(x^2+y^2-2\right)^2=1-x^2\)
Do \(1-x^2\le1\) \(\forall x\)
\(\Rightarrow-1\le x^2+y^2-2\le1\)
\(\Rightarrow1\le x^2+y^2\le3\)
\(A_{min}=1\) khi \(\left\{{}\begin{matrix}x=0\\y=\pm1\end{matrix}\right.\)
\(A_{max}=3\) khi \(\left\{{}\begin{matrix}x=0\\y=\pm\sqrt{3}\end{matrix}\right.\)
gt <=> \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)
Đặt: \(\frac{1}{a}=x;\frac{1}{b}=y;\frac{1}{c}=z\)
=> Thay vào thì \(VT=\frac{\frac{1}{xy}}{\frac{1}{z}\left(1+\frac{1}{xy}\right)}+\frac{1}{\frac{yz}{\frac{1}{x}\left(1+\frac{1}{yz}\right)}}+\frac{1}{\frac{zx}{\frac{1}{y}\left(1+\frac{1}{zx}\right)}}\)
\(VT=\frac{z}{xy+1}+\frac{x}{yz+1}+\frac{y}{zx+1}=\frac{x^2}{xyz+x}+\frac{y^2}{xyz+y}+\frac{z^2}{xyz+z}\ge\frac{\left(x+y+z\right)^2}{x+y+z+3xyz}\)
Có BĐT x, y, z > 0 thì \(\left(x+y+z\right)\left(xy+yz+zx\right)\ge9xyz\)Ta thay \(xy+yz+zx=1\)vào
=> \(x+y+z\ge9xyz=>\frac{x+y+z}{3}\ge3xyz\)
=> Từ đây thì \(VT\ge\frac{\left(x+y+z\right)^2}{x+y+z+\frac{x+y+z}{3}}=\frac{3}{4}\left(x+y+z\right)\ge\frac{3}{4}.\sqrt{3\left(xy+yz+zx\right)}=\frac{3}{4}.\sqrt{3}=\frac{3\sqrt{3}}{4}\)
=> Ta có ĐPCM . "=" xảy ra <=> x=y=z <=> \(a=b=c=\sqrt{3}\)
1.a) (\(\sqrt{12}\) -3\(\sqrt{75}\))\(\sqrt{3}\)
=\(\sqrt{12}\).\(\sqrt{3}\)-3\(\sqrt{75}\).\(\sqrt{3}\)
=\(2\sqrt{3}.\sqrt{3}-3.5\sqrt{3}.\sqrt{3}\)
=2.3-15.3
=6-45
= -39
b)\(\left(\sqrt{18}-4\sqrt{72}\right)2\sqrt{2}\)
\(\left(3\sqrt{2}-4.6\sqrt{2}\right).2\sqrt{2}\)
\(\left(3\sqrt{2}-24\sqrt{2}\right).2\sqrt{2}\)
\(3\sqrt{2}.2\sqrt{2}-24\sqrt{2}.2\sqrt{2}\)
= 6.2-48.2 = 12-96= -84
d)\(\left(\sqrt{3}+2\right)\left(\sqrt{3}-5\right)\)
\(3-5\sqrt{3}+2\sqrt{3}-10\)
\(-7-3\sqrt{3}\)
\(\)c)\(\left(\sqrt{6}-2\right)\left(\sqrt{6}+7\right)\)
\(\Leftrightarrow6+6\sqrt{7}-2\sqrt{6}-14\)
\(\Leftrightarrow-8+5\sqrt{6}\)
d)\(\left(\sqrt{3}+2\right)\left(\sqrt{3}-5\right)\)
\(\Leftrightarrow3-5\sqrt{3}+2\sqrt{3}-3\)
\(\Leftrightarrow-3\sqrt{3}\)
a^4 +b^4 >= ab^3 +a^3 b (1)
<=> 4a^4 +4b^4 - 4ab(a^2 +b^2) >= 0
<=> [(a^2 +b^2 )^2 - 4ab(a^2 +a^2) +4a^2 b^2 ] +3a^4 +3b^4 -6a^2 b^2 >=0
<=> (a -b )^4 +3(a^4 + b^4 -2a^2 b^2 ) >= 0 (2)
cos (a-b )^4 >= 0
a^4 + b^4 >= 2a^2 b^2 (co si có thể không cần co si cũng được )
=> (2) đúng => (1) đúng => dpcm
b) a^2 +b^2 +1 >= ab +a+b (1)
<=>2a^2 +2b^2 +2 -2ab -2a-2b >=0
<=>[a^2 +b^2 -2ab ] +[a^2 -2a +1] +[b^2 -2b +1 ] >=0
<=>(a -b)^2 +(a-1)^2 + (b-1)^2 >=0 (2)
(2) đúng (1) đúng => dpcm
a+b=4
<=> a^2 + b^2 +2ab=16
<=> a^2 +b^2 = 16 - 2ab (1)
Ta có A=2(a^3.b + a.b^3)
<=> A= 2.a.b.(a^2 +b^2)
Từ (1) => A= 2a.b.(16 -2a.b)
<=> A=-4.a^2.b^2 + 32.a.b
<=> A = -4a^2.b^2 + 32a.b - 64 +64
<=> A= -4.(a.b - 4)^2 +64
.........
(Tự làm)