\(a^2\left(a+1\right)-b^2\left(b-1\right)+ab-3a...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2020

Ta có : \(a^2\left(a+1\right)-b^2\left(b-1\right)+ab-3ab\left(a-b+1\right)\)

= \(a^3+a^2-b^3+b^2+ab-3ab\left(7+1\right)\)

\(=\left(a-b\right)\left(a^2+ab+b^2\right)+a^2+b^2+ab-24ab\)

\(=7\left(a^2+b^2+ab\right)+a^2+b^2-23ab\)

\(=7a^2+7b^2+7ab+a^2+b^2-23ab\)

\(=8a^2-16ab+8b^2\)

\(=8\left(a^2-2ab+b^2\right)\)

\(=8\left(a-b\right)^2=8.7^2=392\)

31 tháng 3 2020

undefined

Y
1 tháng 7 2019

\(A=a^3-b^3+a^2+b^2-3ab\left(a-b\right)-3ab+ab\)

\(=\left(a-b\right)\left(a^2+ab+b^2\right)+\left(a-b\right)^2-3ab\left(a-b\right)\)

\(=\left(a-b\right)\left(a^2-2ab+b^2+3ab\right)+49-3ab\left(a-b\right)\)

\(=\left(a-b\right)^2+3ab\left(a-b\right)+49-3ab\left(a-b\right)\)

\(=49+49=98\)

18 tháng 6 2019

Ứng dụng giải toán đã được review rất hay bởi trang báo uy tín https://www.facebook.com/docbaoonlinethayban/videos/467035000526358/?v=467035000526358 Cả nhà tải ngay bằng link dưới đây nhé. https://giaingay.com.vn/downapp.html

24 tháng 11 2018

       \(3x^2+3y^2+4xy+2x-2y+2=0\)

\(\Rightarrow\left(2x^2+4xy+2y^2\right)+\left(x^2+2x+1\right)+\left(y^2-2y+1\right)=0\)

\(\Rightarrow2\left(x+y\right)^2+\left(x+1\right)^2+\left(y-1\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}x+y=0\\x+1=0\\y-1=0\end{cases}\Rightarrow\hept{\begin{cases}x=-1\\y=1\end{cases}}}\)

Khi đó: \(A=\left(-1+1\right)^{2014}+\left(-1+2\right)^{2015}+\left(1-1\right)^{2016}\)

\(=0+1+0=1\)

22 tháng 12 2018

M = a3 + b3 + 3ab(a2 + b2) + 6a2b2(a + b)

= (a + b)(a2 - ab + b2) + 3ab((a + b)2 - 2ab) + 6a2b2(a + b)

= (a + b)((a + b)2 - 3ab) + 3ab((a + b)2 - 2ab) + 6a2b2(a + b)

= 1 - 3ab + 3ab(1 - 2ab) + 6a2b2

= 1 - 3ab + 3ab - 6a2b2 + 6a2b2 = 1

29 tháng 12 2018

\(M=\left(a+b\right)\left(a^2-ab+b^2\right)+3ab\left(a^2+b^2+2ab-2ab\right)+6a^2b^2\left(a+b\right)\)

\(M=a^2+2ab+b^2-3ab+3ab-6a^2b^2+6a^2b^2\)

\(M=\left(a+b\right)^2=1\)

1 tháng 4 2019

ngu lắm sơn à

25 tháng 9 2015

1/

\(A=a^3+a^2-b^3+b^2+ab-3a^2b+3ab^2-3ab\)

\(A=\left(a^3-3a^2b+3ab^2-b^3\right)+\left(a^2-2ab+b^2\right)=\left(a-b\right)^3+\left(a-b\right)^2=7^3+7^2=392\)

 

 

Câu hỏi tương tự có nha

12 tháng 3 2020

oki bạn

22 tháng 7 2016

\(F=a^2\left(a+1\right)-b^2\left(b-1\right)+ab-3ab\left(1-1\right)\)(vì a-b=1)

\(F=a^2\left(a+1\right)-b^2\left(b-1\right)+ab\)

\(F=a^3+a^2-b^3+b^2+ab\)

\(F=\left(a^3-b^3\right)+a^2+b^2+ab\)

\(F=\left(a-b\right)\left(a^2+ab+b^2\right)+\left(a^2+ab+b^2\right)\)

\(F=\left(a^2+ab+b^2\right)+\left(a^2+ab+b^2\right)\)(vì a-b=1)

\(F=2\left(a^2+ab+b^2\right)\)

\(F=2\left(a^2-2ab+b^2+3ab\right)\)

\(F=2\left(\left(a-b\right)^2+3ab\right)\)

\(F=2\left(1+3ab\right)\)

\(F=2+6ab\)

ta có x+y+z=0 

=> \(\left(x+y+z\right)^2=0\)

\(< =>x^2+y^2+z^2+2xy+2xz+2yx=0\)

\(< =>x^2+y^2+z^2+2\left(xy+yz+xz\right)=0\)

\(< =>x^2+y^2+z^2+2.0=0\)(vì xy+xz+yz=0)

\(< =>x^2+y^2+z^2=0\)

\(< =>\hept{\begin{cases}x^2=0\\y^2=0\\z^2=0\end{cases}< =>x=y=z=0}\)

thay x=y=z=0 vào 

\(K=\left(x-1\right)^{2014}+y^{2015}+\left(z+1\right)^{2016}\)

\(K=\left(0-1\right)^{2014}+0^{2015}+\left(0+1\right)^{2016}\)

\(K=1+0+1=2\)

\(\)

25 tháng 7 2016

thanks nhìu

22 tháng 12 2017

thay 1=ab+bc+ca vào M phân tích và rút gọn

22 tháng 12 2017

bác giải ra luôn đi 

làm cái đề ra ấy, ngại viết lại đề :P

\(\Leftrightarrow2\left(a^2+b^2+c^2-ab-bc-ca\right)=4\left(a^2+b^2+c^2\right)-4\left(ab+bc+ca\right)\)

\(\Leftrightarrow2\left(a^2+b^2+c^2\right)-2\left(ab+bc+ca\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}\)

\(\Rightarrow M=1^{2018}+1^{2019}+1^{2020}=1+1+1=3\)