K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
10 tháng 10 2021

Lời giải:
$\frac{2}{3}x(x^2-16)=0$

$\Leftrightarrow x=0$ hoặc $x^2-16=0$

$\Leftrightarrow x=0$ hoặc $(x-4)(x+4)=0$

$\Leftrightarrow x=0$ hoặc $x-4=0$ hoặc $x+4=0$

$\Leftrightarrow x=0$ hoặc $x=\pm 4$

Không có đáp án nào đúng.

27 tháng 7 2017

x^2 -2x = 24

=> x^2 - 2x - 24=0

=>x^2 -8x+6x - 24 = 0

=> ( x^2- 8x)+( 6x-24) = 0

=> x(x-8) + 6(x-8) = 0

=> (x+6)(x-8)=0

=>\(\orbr{\begin{cases}x=-6\\x=8\end{cases}}\)

27 tháng 7 2017

\(=\frac{\left(2.5\right)^4.3^4-2^4\left(3.5\right)^2}{2^8.5^2.3^3}=\frac{2^4.3^2.5^2\left(5^2.3^2-1\right)}{2^8.5^2.3^3}=\frac{255-1}{16.3}=\frac{14}{3}\)

3 tháng 7 2018

a. Ta có: \(x^2-10x+26+y^2+2y=0\Leftrightarrow\left(x^2-10x+25\right)+\left(y^2+2y+1\right)=0\\ \)

\(\Leftrightarrow\left(x+5\right)^2+\left(y+1\right)^2=0\Rightarrow\hept{\begin{cases}x+5=0\\y+1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-5\\y=-1\end{cases}}}\)

b. \(\left(2x+5\right)^2-\left(x-7\right)^2=0\Leftrightarrow\left(2x+5+x-7\right).\left(2x+5-x+7\right)=0\)

\(\Leftrightarrow\left(3x-2\right).\left(x+12\right)=0\Leftrightarrow\orbr{\begin{cases}3x-2=0\\x+12=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{2}{3}\\x=-12\end{cases}}}\)

c. \(25.\left(x-3\right)^2=49.\left(1-2x\right)^2\Leftrightarrow\left(5x-15\right)^2=\left(7-14x\right)^2\Leftrightarrow\left(5x-15\right)^2-\left(7-14x\right)^2=0\)

\(\Leftrightarrow\left(5x-15-7+14x\right).\left(5x-15+7-14x\right)=0\Leftrightarrow\left(19x-22\right).\left(-9x-8\right)=0\)

\(\Leftrightarrow\left(19x-22\right).\left(9x+8\right)=0\Leftrightarrow\orbr{\begin{cases}19x-22=0\\9x+8=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{22}{19}\\x=-\frac{8}{9}\end{cases}}}\)

d. \(\left(x+2\right)^2=\left(3x-5\right)^2\Leftrightarrow\left(x+2\right)^2-\left(3x-5\right)^2=0\Leftrightarrow\left(x+2+3x-5\right).\left(x+3-3x+5\right)=0\)

\(\Leftrightarrow\left(4x-3\right).\left(8-2x\right)=0\Leftrightarrow\orbr{\begin{cases}4x-3=0\\8-2x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{4}\\x=4\end{cases}}}\)

e. \(x^2-2x+1=16\Leftrightarrow\left(x-1\right)^2-16=0\Leftrightarrow\left(x-1-4\right).\left(x-1+4\right)=0\)

\(\Leftrightarrow\left(x-5\right).\left(x+3\right)=0\Leftrightarrow\orbr{\begin{cases}x-5=0\\x+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=5\\x=-3\end{cases}}}\)

Cảm ơn bn rất nhìu nha!!!^-^!!!

a, 4x2 - 49 = 0

⇔⇔ (2x)2 - 72 = 0

⇔⇔ (2x - 7)(2x + 7) = 0

⇔{2x−7=02x+7=0⇔⎧⎪ ⎪⎨⎪ ⎪⎩x=72x=−72⇔{2x−7=02x+7=0⇔{x=72x=−72

b, x2 + 36 = 12x

⇔⇔ x2 + 36 - 12x = 0

⇔⇔ x2 - 2.x.6 + 62 = 0

⇔⇔ (x - 6)2 = 0

⇔⇔ x = 6

e, (x - 2)2 - 16 = 0

⇔⇔ (x - 2)2 - 42 = 0

⇔⇔ (x - 2 - 4)(x - 2 + 4) = 0

⇔⇔ (x - 6)(x + 2) = 0

⇔{x−6=0x+2=0⇔{x=6x=−2⇔{x−6=0x+2=0⇔{x=6x=−2

f, x2 - 5x -14 = 0

⇔⇔ x2 + 2x - 7x -14 = 0

⇔⇔ x(x + 2) - 7(x + 2) = 0

⇔⇔ (x + 2)(x - 7) = 0

⇔{x+2=0x−7=0⇔{x=−2x=7

18 tháng 7 2019

a) (x - 1)3 - x(x - 2)- (x - 2) = 0

<=> x3 - 2x2 + x - x2 + 2x - 1 - x3 + 4x2 - 4x - x + 2 = 0

<=> x2 - 2x + 1 = 0

<=> x2 - 2.x.1 + 12 = 0

<=> (x - 1)2 = 0

        x - 1 = 0

        x = 0 + 1

        x = 1

=> x = 1

18 tháng 7 2019

a)Ta có : \(\left(x-1\right)^3-x\left(x-2\right)^2-\left(x-2\right)=0\)

\(=>\left(x-1\right)^3-\left(x^2-2x\right)\left(x-2\right)-\left(x-2\right)=0\)

\(=>\left(x-1\right)^3-\left(x-2\right)\left(x^2-2x+1\right)=0\)

\(=>\left(x-1\right)^3-\left(x-2\right)\left(x-1\right)^2=0\)

\(=>\left(x-1\right)^2\left(x-1-x+2\right)=0\)

\(=>\left(x-1\right)^2=0=>x-1=0=>x=1\)

Vậy x=1

b)(2x+5)(2x-7)-(4x+3)2=16

\(=>4x^2-4x-35-16x^2-24x-9-16=0\)

\(=>-\left(12x^2+28x+60\right)=0\)

\(=>12\left(x^2+\frac{7}{3}x+\frac{5}{3}\right)=0\)

\(=>x^2+\frac{7}{3}x+\frac{49}{36}+\frac{11}{36}=0=>\left(x+\frac{7}{6}\right)^2+\frac{11}{36}=0\)

Lại có \(\left(x+\frac{7}{6}\right)^2\ge0=>\left(x+\frac{7}{6}\right)^2+\frac{11}{36}\ge\frac{11}{36}>0\)

Vậy ko có giá trị nào của x thỏa mãn đề bài

\(=>x^2+\frac{7}{3}x+\frac{49}{36}+\frac{11}{36}=0=>\left(x+\frac{7}{6}\right)^2+\frac{11}{36}=0\)