Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Nguyễn Tuấn Minh - Toán lớp 7 - Học toán với OnlineMath
Đặt \(A=\frac{a+1}{b}+\frac{b+1}{a}=\left(\frac{a+1}{b}+1\right)+\left(\frac{b+1}{a}+1\right)-2=\left(a+b+1\right)\left(\frac{1}{a}+\frac{1}{b}\right)-2\)
Vì A có giá trị là một số tự nhiên nên \(\frac{1}{a}+\frac{1}{b}\) phải có giá trị là số tự nhiên hay
\(\frac{a+b}{ab}\) là một số tự nhiên \(\Rightarrow\left(a+b\right)⋮ab\)
Vì d là ƯCLN(a,b) nên \(a=dm,b=dn\) \(\Rightarrow\begin{cases}a+b=d\left(m+n\right)\\ab=d^2mn\end{cases}\) (m,n thuộc N)
\(\Rightarrow\frac{a+b}{ab}=\frac{d\left(m+n\right)}{d^2mn}=\frac{m+n}{dmn}\)
=> (m+n) chia hết cho dmn \(\Rightarrow m+n\ge d\)
\(\Rightarrow d\left(m+n\right)\ge d^2\) hay \(a+b\ge d^2\)
d) Ta có: \(n^2+5n+9⋮n+3\)
\(\Leftrightarrow n^2+3n+2n+6+3⋮n+3\)
\(\Leftrightarrow n\left(n+3\right)+2\left(n+3\right)+3⋮n+3\)
mà \(n\left(n+3\right)+2\left(n+3\right)⋮n+3\)
nên \(3⋮n+3\)
\(\Leftrightarrow n+3\inƯ\left(3\right)\)
\(\Leftrightarrow n+3\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{-2;-4;0;-6\right\}\)
Vậy: \(n\in\left\{-2;-4;0;-6\right\}\)
d) Ta có: n2+5n+9⋮n+3n2+5n+9⋮n+3
⇔n2+3n+2n+6+3⋮n+3⇔n2+3n+2n+6+3⋮n+3
⇔n(n+3)+2(n+3)+3⋮n+3⇔n(n+3)+2(n+3)+3⋮n+3
mà n(n+3)+2(n+3)⋮n+3n(n+3)+2(n+3)⋮n+3
nên 3⋮n+33⋮n+3
⇔n+3∈Ư(3)⇔n+3∈Ư(3)
⇔n+3∈{1;−1;3;−3}
Bạn gì ơi đăng thì đăng ít bài 1 thôi bạn đăng nhiều thế chẳng ai làm hết đc đâu
Mình làm bài 4
Ta có ; 7n và 7n + 1 là 2 số nguyên liên tiếp
Mà ƯCLN của 2 số nguyên liên tiếp luôn luôn bằng 1
Vậy phân số : \(\frac{7n}{7n+1}\) luôn luôn tối giản với mọi n
Ta có: a/b=36/45=4/5 Suy ra a=4k, b=5k
Suy ra BCNN(a;b)=BCNN(4k;5k)=22.5.k=20k
Mà BCNN(a;b)=300
Suy ra 20k=300
Suy ra k=300:20=15 Suy ra a=60,b=75
b) Ta có 21/35=3/5
ta có 3/5 là phân số tối giản bằng phân số a/b suy ra phân số a/b đã chia cho ƯCLN (a;b)=30 để được 1 phân số tối giản là 3/5
Suy ra a=3.30=90, b=5.30=160
c) Ta có BCNN(a;b).ƯCLN (a,b)=ab=3549
Ta có: a/b=15/35=3/7 suy ra a=3k, b=7k
Suy ra a.b=3k.7k=3549
Suy ra 21.k2=3549
Suy ra k2=169 Suy ra k=13