Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
m x - m 2 > 2 x - 4 ⇔ (m - 2)x > (m - 2)(m + 2)
Nếu m > 2 thì m – 2 > 0, bất phương trình có nghiệm là x > m + 2;
Nếu m < 2 thì m – 2 < 0, bất phương trình có nghiệm là x < m + 2;
Nếu m = 2 thì bất phương trình trở thành 0x > 0, bất phương trình vô nghiệm.
\(y=\sqrt{\left(2x-1\right)^2}+\sqrt{\left(x-2\right)^2}=\left|2x-1\right|+\left|x-2\right|\)
\(y=\left[{}\begin{matrix}3x-3\left(\text{với }x\ge2\right)\\3-3x\left(\text{với }x\le\dfrac{1}{2}\right)\\x+1\left(\text{với }\dfrac{1}{2}\le x\le2\right)\end{matrix}\right.\)
Từ đó ta có đồ thị hàm số như sau:
Từ đồ thị ta thấy phương trình \(\sqrt{4x^2-4x+1}+\sqrt{x^2-4x+4}=m\):
- Có đúng 1 nghiệm khi \(m=\dfrac{3}{2}\)
- Có 2 nghiệm phân biệt khi \(m>\dfrac{3}{2}\)
- Vô nghiệm khi \(m< \dfrac{3}{2}\)
pt tương đương với:
(m2 - 1)x = m + 1
(m - 1)(m+1) x = m+ 1
- Với m = -1 , pt trở thành 0x = 0, có vô số nghiệm
- Với m = 1 , pt trở thành 0x = 2, vô nghiệm
- Với m#1 và m#-1 => m + 1 # 0 và m - 1 # 0 => x = 1/(m-1)
\(\Leftrightarrow\left(m-2\right)x>m^2-4=\left(m-2\right)\left(m+2\right)\)
nếu m =2 => 0.x > 0.4 => vô nghiệm
Nếu m> 2 => m-2 >0 chia hai vế cho m-2<0
\(\Rightarrow x>m+2\)
Nếu m<2 => m-2 <0 chia hai cho m-2 <0
\(\Rightarrow x< m+2\)
Kết luận:
Nếu m =2 Phương trình vô nghiêm
nếu m> 2 có nghiệm: \(x>m+2\)
nếu m<2 có nghiệm: \(x< m+2\)
Bạn có nhầm lẫn ở đâu ko nhỉ:
\(\Leftrightarrow-m^2>-4\Leftrightarrow m^2< 4\)
- Nếu \(-2< m< 2\Rightarrow\) BPT đúng với mọi \(x\in R\)
- Nếu \(\left[{}\begin{matrix}m>2\\m< -2\end{matrix}\right.\) BPT vô nghiệm
\(\text{Δ}=\left(-4\right)^2-4\cdot1\cdot\left(m-3\right)=16-4m+12=-4m+28\)
Để phương trình có hai nghiệm phân biệt thì -4m+28>0
=>-4m>-28
=>m<7
Để phương trình có nghiệm kép thì -4m+28=0
hay m=7
Để phương trình vô nghiệm thì -4m+28<0
hay m>7
\(mx^2+\left(m+1\right)x-2m\le0\) (1)
Nếu \(m=0\) thì dễ thấy (1) có nghiệm \(x\le0\)
Xét \(m\ne0\) Khi đó (1) là bất phương trình bậc hai với a=m.
Ngoài ra, biệt thức
\(\Delta=9m^2+2m+1=\left(3m+\frac{1}{3}\right)^2+\frac{8}{9}>0\) \(\curlyvee m\in R\). Từ đó ta có ngay kết luận :
- Khi m < 0, bất phương trình (1) có tập nghiệm
T(1) = \(\left(x;\frac{-m-1+\sqrt{9m^2+2m+1}}{2m}\right)\)\(\cup\)\(\left(\frac{-m-1-\sqrt{9m^2+2m+1}}{2m};+\infty\right)\)
- Khi m = 0, bất phương trình (1) có tập nghiệm T(1) =R+
- Khi m>0, bất phương trình (1) có tập nghiệm
T(1)=\(\left(\frac{-m-1-\sqrt{9m^2+2m+1}}{2m};\frac{-m-1+\sqrt{9m^2+2m+1}}{2m}\right)\)
\(\Leftrightarrow m^2x-2m=4x+4\)
\(\Leftrightarrow\left(4-m^2\right)x+2\left(2+m\right)=0\)
\(\Leftrightarrow\left(2+m\right)\left(2x-mx+2\right)=0\)
Xet voi \(m=-2\)thi PT tro thanh
\(4x+4=4x+4\)
\(\Leftrightarrow0x=0\)
Vay PT co vo so nghiem
Xet \(m\ne-2\)thi PT co nghiem la
\(2x-mx+2=0\)
\(\Leftrightarrow\left(2-m\right)x=-2\)
\(\Leftrightarrow x=\frac{2}{m-2}\)
Suy ra: PT co nghiem khi \(m\ne2\)
Vay PT co nghiem tong quat la \(x=\frac{2}{m-2}\left(m\ne2\right)\)