\(\dfrac{\dfrac{x}{x-1}-\dfrac{x+1}{x...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 4 2017

\(A=\dfrac{\dfrac{x}{x-1}-\dfrac{x+1}{x}}{\dfrac{x}{x+1}-\dfrac{x-1}{x}}=\dfrac{\dfrac{x^2-\left(x^2-1\right)}{x\left(x-1\right)}}{\dfrac{x^2-\left(x^2-1\right)}{x\left(x+1\right)}}=\dfrac{\dfrac{1}{x\left(x-1\right)}}{\dfrac{1}{x\left(x+1\right)}}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ne\left\{0;\pm1\right\}\\A=\dfrac{x+1}{x-1}\end{matrix}\right.\)

29 tháng 6 2017

Biến đổi các biểu thức hữu tỉ. Giá trị của phân thức

Biến đổi các biểu thức hữu tỉ. Giá trị của phân thức

21 tháng 4 2017

Giải bài 46 trang 57 Toán 8 Tập 1 | Giải bài tập Toán 8

28 tháng 6 2017

Quy đồng mẫu thức nhiều phân thức

Quy đồng mẫu thức nhiều phân thức

17 tháng 11 2017

Bạn siêng thật !!!

21 tháng 4 2017

Giải bài 22 trang 46 Toán 8 Tập 1 | Giải bài tập Toán 8

30 tháng 11 2021

Giải bài 22 trang 46 Toán 8 Tập 1 | Giải bài tập Toán 8

11 tháng 11 2017

Bài 7:(Sbt/25) Dùng tính chất cơ bản của phân thức hoặc quy tắc đổi dấu để biến mỗi cặp phân thức sau thành một cặp phân thức bằng nó và có cùng mẫu thức :

a. \(\dfrac{3x}{x-5}\)\(\dfrac{7x+2}{5-x}\)

Ta có:

\(\dfrac{3x}{x-5}=\dfrac{-\left(3x\right)}{-\left(x-5\right)}=\dfrac{-3x}{5-x}\)

\(\dfrac{7x+2}{5-x}\)

Vậy .....

b.\(\dfrac{4x}{x+1}\)\(\dfrac{3x}{x-1}\)

Ta có:

\(\dfrac{4x}{x+1}=\dfrac{4x\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}=\dfrac{4x^2-4x}{x^2-1}\)

\(\dfrac{3x}{x-1}=\dfrac{3x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}=\dfrac{3x^2+3x}{x^2-1}\)

Vậy ..........

c. \(\dfrac{2}{x^2+8x+16}\)\(\dfrac{x-4}{2x+8}\)

Ta có:

\(\dfrac{2}{x^2+8x+16}=\dfrac{4}{2\left(x+4\right)^2}\)

\(\dfrac{x-4}{2x+8}=\dfrac{\left(x-4\right)\left(x+4\right)}{2\left(x+4\right)\left(x+4\right)}=\dfrac{x^2-16}{2\left(x+4\right)^2}\)

Vậy .........

d. \(\dfrac{2x}{\left(x+1\right)\left(x-3\right)}\)\(\dfrac{x+3}{\left(x+1\right)\left(x-2\right)}\)

Ta có:

\(\dfrac{2x}{\left(x+1\right)\left(x-3\right)}=\dfrac{2x\left(x-2\right)}{\left(x+1\right)\left(x-3\right)\left(x-2\right)}=\dfrac{2x^2-4x}{\left(x+1\right)\left(x-2\right)\left(x-3\right)}\)

\(\dfrac{x+3}{\left(x+1\right)\left(x-2\right)}=\dfrac{\left(x+3\right)\left(x-3\right)}{\left(x+1\right)\left(x-2\right)\left(x-3\right)}=\dfrac{x^2-9}{\left(x+1\right)\left(x-2\right)\left(x-3\right)}\)

Vậy .........

21 tháng 4 2017

Giải bài 25 trang 47 Toán 8 Tập 1 | Giải bài tập Toán 8

16 tháng 6 2017

dap-an-bai-25_fix

4 tháng 8 2018

mk nghỉ bài này đề sai

a) điều kiện : \(x\ne0;x\ne-1;x\ne2\)

ta có : \(A=1+\left(\dfrac{x+1}{x^3+1}-\dfrac{1}{x-x^2-1}+\dfrac{2}{x+1}\right):\dfrac{x^3-2x^2}{x^3-x^2+x}\)

\(\Leftrightarrow A=1+\left(\dfrac{x+1}{\left(x+1\right)\left(x^2-x+1\right)}+\dfrac{1}{x^2-x+1}+\dfrac{2}{x+1}\right):\dfrac{x\left(x-2\right)}{x^2-x+1}\) \(\Leftrightarrow A=1+\left(\dfrac{x+1+x+1+2\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\right):\dfrac{x\left(x-2\right)}{x^2-x+1}\) \(\Leftrightarrow A=1+\left(\dfrac{2x^2+4}{\left(x+1\right)\left(x^2-x+1\right)}\right):\dfrac{x^2-x+1}{x\left(x-2\right)}\) \(\Leftrightarrow A=1+\dfrac{2x^2+4}{x\left(x+1\right)\left(x-2\right)}=\dfrac{2x^2+4+x\left(x+1\right)\left(x-2\right)}{x\left(x+1\right)\left(x-2\right)}\)

\(\Leftrightarrow A=\dfrac{x^3+x^2-2x+4}{x\left(x+1\right)\left(x-2\right)}\)

b) ta có : \(\left|x-\dfrac{3}{4}\right|=\dfrac{5}{4}\) \(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{3}{4}=\dfrac{5}{4}\\x-\dfrac{3}{4}=\dfrac{-5}{4}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=2\left(L\right)\\x=\dfrac{-1}{2}\end{matrix}\right.\)

thế vào \(A\) ta có : \(A=\dfrac{41}{5}\)

vậy ...............................................................................................................

28 tháng 6 2017

Phép cộng các phân thức đại số

Phép cộng các phân thức đại số

7 tháng 3 2018

a) \(\dfrac{1}{2}+\left[x:\left(1-\dfrac{x}{x+2}\right)\right]=\dfrac{1}{2}+\left(x:\dfrac{x+2-x}{x+2}\right)\)

\(=\dfrac{1}{2}+\dfrac{x\left(x+2\right)}{2}=\dfrac{x^2+2x+1}{2}=\dfrac{\left(x+1\right)^2}{2}\)

b)\(\left(1-\dfrac{1}{x^2}\right):\left(1+\dfrac{1}{x}+\dfrac{1}{x^2}\right)=\dfrac{x^3-1}{x^2}:\dfrac{x^2+x+1}{x^2}\)

\(=\dfrac{\left(x-1\right)\left(x^2+x+1\right).x^2}{x^2.\left(x^2+x+1\right)}=x-1\)