Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(x^6+1\)
\(=x^6+x^4-x^4+x^2-x^2+1\)
\(=\left(x^6-x^4+x^2\right)+\left(x^4-x^2+1\right)\)
\(=x^2\left(x^4-x^2+1\right)+\left(x^4-x^2+1\right)\)
\(=\left(x^2+1\right)\left(x^4-x^2+1\right)\)
2) \(x^6-y^6\)
\(=\left(x^3+y^3\right)\left(x^3-y^3\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)\left(x-y\right)\left(x^2+xy+y^2\right)\)
a, \(\left(x+1\right)^2-25=\left(x+1-5\right)\left(x+1+5\right)=\left(x-4\right)\left(x+6\right)\)
b, \(\left(xy+4\right)^2-4\left(x+y\right)^2=\left(xy+4\right)^2-\left(2x+2y\right)^2=\left(xy+4-2x-2y\right)\left(xy+4+2x+2y\right)\)
c, xem lại đề nhé
b, ( x + 4) ^2 - 25 = ( x + 4)^2 - 5^2 = ( x + 4 - 5)( x + 4 + 5) = ( x - 1)( x+9)
\(a,x^6-y^6=\left(x^3\right)^2-\left(y^3\right)^2=\left(x^3-y^3\right)\left(x^3+y^3\right).\)
\(=\left(x-y\right)\left(x^2+xy+y^2\right).\left(x+y\right)\left(x^2-xy+y^2\right)\)
\(b,9x^2+y^2+6xy=\left(3x\right)^2+2.3x.y+y^2=\left(3x+y\right)^2\)
\(c,6x-9-x^2=-\left(x^2-6x+9\right)=-\left(x^2-2.x.3+3^2\right)=-\left(x-3\right)^2\)
a) (2x+y)3
c)(x2-y2)(x4+x2y2+y4)
d)-x3+9x2-27x+27
<=> -(x3-9x2+27x-27)
<=>-(x-3)3
5 . ( x + 2 ) . ( x - 2 ) - ( 3 . 4x )2 .
= 5( x\(^2\) - 4) - 12x\(^2\) = 5x\(^2\) - 20 - 12x\(^2\) = -7x\(^2\) - 20
2 . ( x - y ) . ( x + y ) + ( x + y )2 + ( x - y )2
= 2( x\(^2\) - y\(^2\)) + ( x\(^2\) + 2xy + y\(^2\)) + ( x\(^2\) - 2xy + y\(^2\))
= 2x\(^2\) - 2y\(^2\) + x\(^2\) + 2xy + y\(^2\) + x\(^2\) - 2xy + y\(^2\)
= 4x\(^2\)