Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mk làm mẫu 2 bài đầu nhé, các bài còn lại bạn làm tương tự, các bài này đều áp dụng tính chất dãy tỉ số bằng nhau
1) Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{x}{3}=\frac{y}{4}=\frac{x+y}{3+4}=\frac{14}{7}=2\)
suy ra: \(\frac{x}{3}=2\)=> \(x=6\)
\(\frac{y}{4}=2\)=> \(y=8\)
Vậy...
2) Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{5}=\frac{y}{3}=\frac{x-y}{5-3}=\frac{20}{2}=10\)
suy ra: \(\frac{x}{5}=10\)=> \(x=50\)
\(\frac{y}{3}=10\)=> \(y=30\)
Vậy...
\(a,\frac{2x}{3}=\frac{2y}{4}=\frac{4z}{5}\)và x + y + z = 49
Ta có : \(\frac{2x}{3}=\frac{2y}{4}=\frac{4z}{5}=\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{2}}=\frac{z}{\frac{5}{4}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{2}}=\frac{z}{\frac{5}{4}}=\frac{x+y+z}{\frac{3}{2}+\frac{4}{2}+\frac{5}{4}}=\frac{49}{\frac{19}{4}}=49\cdot\frac{4}{19}=\frac{196}{19}\)
Vậy : \(\hept{\begin{cases}\frac{x}{\frac{3}{2}}=\frac{196}{19}\\\frac{y}{\frac{4}{2}}=\frac{196}{19}\\\frac{z}{\frac{5}{4}}=\frac{169}{14}\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{294}{19}\\y=\frac{392}{19}\\z=\frac{245}{19}\end{cases}}\)
\(b,\frac{x}{y}=\frac{3}{4};\frac{y}{z}=\frac{5}{7}\)và 2x + 3y - z = 186
Ta có : \(\frac{x}{y}=\frac{3}{4};\frac{y}{z}=\frac{5}{7}\Leftrightarrow\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\)
\(\Leftrightarrow\frac{x}{15}=\frac{y}{20};\frac{y}{20}=\frac{z}{28}\)
\(\Leftrightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)
\(\Leftrightarrow\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{186}{62}=3\)
Vậy : \(\hept{\begin{cases}\frac{x}{15}=3\\\frac{y}{20}=3\\\frac{z}{28}=3\end{cases}}\Leftrightarrow\hept{\begin{cases}x=45\\y=60\\z=84\end{cases}}\)
a) \(\frac{x+1}{3}=\frac{x-2}{4}\)
=> (x+1).4 = (x - 2) . 3
=> 4x + 4 = 3x - 6
=> 4x - 3x = - 6 - 4
=> x = - 10
b) \(\frac{x-6}{7}+\frac{x-7}{8}+\frac{x-8}{9}=\frac{x-9}{10}+\frac{x-10}{11}+\frac{x-11}{12}\)
\(\Rightarrow\left(\frac{x-6}{7}+1\right)+\left(\frac{x-7}{8}+1\right)+\left(\frac{x-8}{9}+1\right)=\left(\frac{x-9}{10}+1\right)+\left(\frac{x-10}{11}+1\right)+\left(\frac{x-11}{12}+1\right)\)
\(\Rightarrow\frac{x+1}{7}+\frac{x+1}{8}+\frac{x+1}{9}=\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}\)
\(\Rightarrow\frac{x+1}{7}+\frac{x+1}{8}+\frac{x+1}{9}-\frac{x+1}{10}-\frac{x+1}{11}-\frac{x+1}{12}\) = 0
\(\Rightarrow\left(x+1\right).\left(\frac{1}{7}+\frac{1}{8}+\frac{1}{9}-\frac{1}{10}-\frac{1}{11}-\frac{1}{12}\right)\)
Vì \(\frac{1}{7}+\frac{1}{8}+\frac{1}{9}-\frac{1}{10}-\frac{1}{11}-\frac{1}{12}\ne0\) nên x + 1 =0
=> x = -1
c) Xem lại đề
\(B=\frac{x}{y}+\frac{\frac{1}{4}+\frac{5}{8}-\frac{7}{13}}{-\frac{2}{12}-\frac{10}{24}+\frac{14}{39}}\)
\(B=\frac{x}{y}+\frac{\frac{1}{4}+\frac{5}{8}-\frac{7}{13}}{-\left(\frac{2}{12}+\frac{10}{24}-\frac{14}{39}\right)}\)
\(B=\frac{x}{y}+\frac{\frac{1}{4}+\frac{5}{8}-\frac{7}{13}}{-\frac{2}{3}\left(\frac{1}{4}+\frac{5}{8}-\frac{7}{13}\right)}\)
\(B=\frac{x}{y}+\frac{1}{-\frac{2}{3}}\)
\(B=\frac{x}{y}-\frac{3}{2}\)
Thế x = 0, 5 = 1/2 ; y = 3 ta được :
\(B=\frac{\frac{1}{2}}{3}-\frac{3}{2}=\frac{1}{6}-\frac{9}{6}=-\frac{8}{6}=-\frac{4}{3}\)
Ta có:\(B=\frac{x}{y}+\frac{\frac{1}{4}+\frac{5}{8}-\frac{7}{13}}{\frac{-2}{12}-\frac{10}{24}+\frac{14}{39}}\)
\(B=\frac{x}{y}+\frac{\frac{1}{4}+\frac{5}{8}-\frac{7}{13}}{-\left(\frac{2}{12}+\frac{10}{24}-\frac{14}{39}\right)}\)
\(B=\frac{x}{y}+\frac{\frac{1}{4}+\frac{5}{8}-\frac{7}{13}}{-\frac{2}{3}\left(\frac{1}{4}+\frac{5}{8}-\frac{7}{13}\right)}\)
\(B=\frac{x}{y}+\frac{1}{-\frac{2}{3}}\)(Do\(\frac{1}{4}+\frac{5}{8}-\frac{7}{13}\ne0\))
\(B=\frac{x}{y}-\frac{3}{2}\)
Thay x = 0,5; y = 3 vào B ta được:
\(B=\frac{0,5}{3}-\frac{3}{2}\)
\(B=\frac{1}{6}-\frac{3}{2}\)
\(B=\frac{1}{6}-\frac{9}{6}\)
\(B=-\frac{4}{3}\)
Vậy\(B=-\frac{4}{3}\)tại x = 0,5; y = 3
Linz