Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2005}-\frac{1}{2006}\)
=> \(A=\frac{1}{1}-\frac{1}{2006}=\frac{2005}{2006}\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2005.2006}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2005}-\frac{1}{2006}\)
\(A=1-\frac{1}{2006}\)
\(A=\frac{2005}{2006}\)
Thắng Nguyễn Phần cuối cùng viết rõ ra một chút :
\(2\sqrt{2}\left(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\right)\ge\frac{y^2+z^2-x^2}{x}+\frac{y^2+x^2-z^2}{z}+\frac{x^2+z^2-y^2}{y}\)
\(\frac{y^2}{x}+\frac{z^2}{x}+\frac{y^2}{z}+\frac{x^2}{z}+\frac{x^2}{y}+\frac{z^2}{y}-\sqrt{2015}\ge\frac{\left[2\left(x+y+z\right)\right]^2}{2\left(x+y+z\right)}-\sqrt{2015}=\sqrt{2015}\)
\(\Rightarrow\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{\sqrt{2015}}{2\sqrt{2}}=\frac{1}{2}\sqrt{\frac{2015}{2}}\)
Đặt \(\sqrt{a^2+b^2=z};\sqrt{a^2+c^2}=y;\sqrt{b^2+c^2}=x\left(x;y;z>0\right)\)
\(\Rightarrow a^2=\frac{y^2+z^2-x^2}{2};b=\frac{x^2+z^2-y^2}{2};c=\frac{x^2+y^2-z^2}{2}\)
Theo đề \(x+y+z=\sqrt{2015}\)
Ta có:\(b+c\le\sqrt{2\left(b^2+c^2\right)}=\sqrt{2}\cdot x\)\(\Rightarrow\frac{a^2}{b+c}\ge\frac{y^2+z^2-x^2}{2\sqrt{2}\cdot x}\)
Tương tự cho 2 cái còn lại rồi, cộng lại:
\(VT\cdot2\sqrt{2}\ge\sqrt{2015}\Rightarrow VT\ge\frac{1}{2}\sqrt{\frac{2015}{2}}\)
a)7/23<11/28
b)2014/2015+2015/2016>2014+2015/2015+2016
c) A= gì vậy
Bài 2:
Chứng minh bất đẳng thức Mincopxki \(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\ge\sqrt{\left(a+c\right)^2+\left(b+d\right)^2}\text{ }\left(1\right)\)
(bình phương vài lần + biến đổi tương đương)
\(S\ge\sqrt{\left(a+b\right)^2+\left(\frac{1}{b}+\frac{1}{c}\right)^2}+\sqrt{c^2+\frac{1}{c^2}}\)
\(\ge\sqrt{\left(a+b+c\right)^2+\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}\)
\(\ge\sqrt{\left(a+b+c\right)^2+\left(\frac{9}{a+b+c}\right)^2}\)
\(t=\left(a+b+c\right)^2\le\left(\frac{3}{2}\right)^2=\frac{9}{4}\)
\(S\ge\sqrt{t+\frac{81}{t}}=\sqrt{t+\frac{81}{16t}+\frac{1215}{16t}}\ge\sqrt{2\sqrt{t.\frac{81}{16t}}+\frac{1215}{16.\frac{9}{4}}}=\frac{\sqrt{153}}{2}\)
Dấu bằng xảy ra khi \(a=b=c=\frac{1}{2}.\)