\(B=\frac{2}{\sqrt{4-3\sqrt[4]{5}+2\sqrt{5}-\sqrt[4]{125}}}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
24 tháng 9 2019

\(D=\sqrt{5}-\sqrt{13-4\sqrt{\left(\sqrt{5}-2\right)^2}}=\sqrt{5}-\sqrt{13-4\left(\sqrt{5}-2\right)}\)

\(=\sqrt{5}-\sqrt{21-4\sqrt{5}}=\sqrt{5}-\sqrt{\left(2\sqrt{5}-1\right)^2}\)

\(=\sqrt{5}-2\sqrt{5}+1=1-\sqrt{5}\)

\(B=10\sqrt{5}+\left|1-\sqrt{5}\right|-\frac{4\left(\sqrt{5}-1\right)}{\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)}\)

\(=10\sqrt{5}+\sqrt{5}-1-\sqrt{5}+1=10\sqrt{5}\)

\(C=\frac{2\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}+\frac{2+\sqrt{3}}{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}+\frac{12\left(3-\sqrt{3}\right)}{\left(3+\sqrt{3}\right)\left(3-\sqrt{3}\right)}\)

\(=\sqrt{3}-1+2+\sqrt{3}+2\left(3-\sqrt{3}\right)=7\)

9 tháng 6 2019

a/ \(=5\sqrt{5}-12\sqrt{5}+6\sqrt{5}-4\sqrt{5}=-5\sqrt{5}\)

Mấy câu kia bấm máy tính là xong hết

B2:

a/ \(=\sqrt{-\left(x^2+5\right)}\)

\(x^2+5>0\forall x\Rightarrow-\left(x^2+5\right)< 0\forall x\)

Vậy biểu thức luôn ko đc xđ

b/ x-4\(\ge0\) \(\Rightarrow x\ge4\)

c/ Có -3<0

Để căn thức xđ\(\Leftrightarrow x+1< 0\Leftrightarrow x< -1\)

d/ Có -(x2+1)<0\(\forall\) x

Để căn thức có nghĩa \(\Leftrightarrow x-3< 0\Leftrightarrow x< 3\)

NV
16 tháng 5 2019

Đặt \(x=\sqrt[4]{5}\Rightarrow x^4=5\Rightarrow x^4-5=0\)

\(A=\frac{2}{\sqrt{4-3x+2x^2-x^3}}=\frac{2\left(x+1\right)}{\sqrt{\left(x+1\right)^2\left(4-3x+2x^2-x^3\right)}}\)

\(=\frac{2\left(x+1\right)}{\sqrt{4+5x-x^5}}=\frac{2\left(x+1\right)}{\sqrt{4+x\left(5-x^4\right)}}=x+1=\sqrt[4]{5}+1\)

\(B=\left(\frac{-\sqrt[4]{2}\left(1-\sqrt[4]{2}\right)}{1-\sqrt[4]{2}}+\frac{1+\sqrt{2}}{\sqrt[4]{2}}\right)^2-\frac{\sqrt{1+\sqrt{2}+\frac{1}{2}}}{1+\sqrt{2}}\)

\(=\left(-\sqrt[4]{2}+\frac{1}{\sqrt[4]{2}}+\sqrt[4]{2}\right)^2-\frac{\sqrt{3+2\sqrt{2}}}{\sqrt{2}\left(\sqrt{2}+1\right)}\)

\(=\frac{1}{\sqrt{2}}-\frac{\sqrt{\left(\sqrt{2}+1\right)^2}}{\sqrt{2}\left(\sqrt{2}+1\right)}=\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}}=0\)

9 tháng 6 2019

\(a,=5\sqrt{5}-12\sqrt{5}+6\sqrt{5}-4\sqrt{5}=-5\sqrt{5}\)

\(\sqrt{29^2-20^2}=\sqrt{\left(29-20\right)\left(29+20\right)}=\sqrt{3^2.7^2}=21\)

9 tháng 6 2019

\(\text{Đặt: }\)\(\hept{\begin{cases}\sqrt{4-\sqrt{15}}=a\\\sqrt{4+\sqrt{15}}=b\end{cases}}\)\(\text{cần tính: a-b}\)

\(\hept{\begin{cases}ab=\sqrt{\left(4-\sqrt{15}\right)\left(4+\sqrt{15}\right)}=1\\a^2+b^2=8\end{cases}}\Rightarrow\left(a-b\right)^2=6\Rightarrow a-b=-\sqrt{6}\left(vì:a< b\right)\)

18 tháng 9 2019

d/ \(x=\sqrt[3]{3+\sqrt{9+\frac{125}{27}}}-\sqrt[3]{-3+\sqrt{9+\frac{125}{27}}}\)

\(\Leftrightarrow x^3=3+\sqrt{9+\frac{125}{27}}+3-\sqrt{9+\frac{125}{27}}-3\left(\sqrt[3]{3+\sqrt{9+\frac{125}{27}}}-\sqrt[3]{-3+\sqrt{9+\frac{125}{27}}}\right)\sqrt[3]{3+\sqrt{9+\frac{125}{27}}}.\sqrt[3]{-3+\sqrt{9+\frac{125}{27}}}\)

\(\Leftrightarrow x^3=6-3x\sqrt[3]{9-9-\frac{125}{27}}\)

\(\Leftrightarrow x^3=6-5x\)

\(\Leftrightarrow\left(x-1\right)\left(x^2+x+6\right)=0\)

\(\Leftrightarrow x=1\)

19 tháng 9 2019

c/

\(\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{18-\sqrt{128}}}}}\)

\(=\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{\left(4-\sqrt{2}\right)^2}}}}\)

\(=\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\sqrt{12}+4}}}\)

\(=\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\left(\sqrt{3}+1\right)^2}}}\)

\(=\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{2}\sqrt{2-\sqrt{3}}}\)

\(=\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{4-2\sqrt{3}}}\)

\(=\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{\left(\sqrt{3}-1\right)^2}}\)

\(=\left(\sqrt{3}-1\right)\sqrt{4+2\sqrt{3}}\)

\(=\left(\sqrt{3}-1\right)\sqrt{\left(\sqrt{3}+1\right)^2}\)

\(=\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)\)

\(=3-1=2\)

12 tháng 4 2020

Cảm ơn bạn nha

Bài 1: Rút gọn biểu thức1) \(\sqrt{12}-\sqrt{27}+\sqrt{48}\)              2) \(\left(\sqrt{25}+\sqrt{20}-\sqrt{80}\right):\sqrt{5}\)3) \(2\sqrt{27}-\sqrt{\frac{16}{3}}-\sqrt{48}-\sqrt{8\frac{1}{3}}\)      4) \(\frac{1}{\sqrt{5}-\sqrt{3}}-\frac{1}{\sqrt{5}+\sqrt{3}}\)5) \(\left(\sqrt{125}-\sqrt{12}-2\sqrt{5}\right)\left(3\sqrt{5}-\sqrt{3}+\sqrt{27}\right)\) ...
Đọc tiếp

Bài 1: Rút gọn biểu thức

1) \(\sqrt{12}-\sqrt{27}+\sqrt{48}\)              2) \(\left(\sqrt{25}+\sqrt{20}-\sqrt{80}\right):\sqrt{5}\)

3) \(2\sqrt{27}-\sqrt{\frac{16}{3}}-\sqrt{48}-\sqrt{8\frac{1}{3}}\)      4) \(\frac{1}{\sqrt{5}-\sqrt{3}}-\frac{1}{\sqrt{5}+\sqrt{3}}\)

5) \(\left(\sqrt{125}-\sqrt{12}-2\sqrt{5}\right)\left(3\sqrt{5}-\sqrt{3}+\sqrt{27}\right)\)   6) \(\left(3\sqrt{20}-\sqrt{125}-15\sqrt{\frac{1}{5}}\right).\sqrt{5}\)

7) \(\left(6\sqrt{128}-\frac{3}{5}\sqrt{50}+7\sqrt{8}\right):3\sqrt{2}\)  8) \(\left(2\sqrt{48}-\frac{3}{2}\sqrt{\frac{4}{3}}+\sqrt{27}\right).2\sqrt{3}\)

9) \(\sqrt{\left(3-2\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{8}-4\right)^2}\)    10) \(\sqrt{\left(4-\sqrt{15}\right)^2}+\sqrt{\left(\sqrt{15}-3\right)^2}\)

11) \(\frac{\sqrt{10}-\sqrt{2}}{\sqrt{5}-1}+\frac{2-\sqrt{2}}{\sqrt{2}-1}\)      12) \(\left(1-\frac{5+\sqrt{5}}{1+\sqrt{5}}\right)\left(\frac{5-\sqrt{5}}{1-\sqrt{5}}-1\right)\)

13) \(\sqrt{15-6\sqrt{6}}\)    14) \(\sqrt{8-2\sqrt{15}}\)    15) \(\sqrt[3]{-2}.\sqrt[3]{32}+\sqrt{2}.\sqrt{32}\)

 

1
26 tháng 11 2017

Giúp mình :<