Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ok, ta co \(A=\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{100^2}\)
\(A< \frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+...+\frac{1}{99\cdot100}\)
\(A< \frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+..+\frac{1}{99}-\frac{1}{100}\)
\(A< \frac{1}{4}-\frac{1}{100}\)
\(A< \frac{1}{4}\)
Lai co \(A>\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}+...+\frac{1}{100\cdot101}=\)
\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+..+\frac{1}{100}-\frac{1}{101}\)
\(=\frac{1}{5}-\frac{1}{101}\)
\(A>\frac{1}{6}\)
a) \(\left(\frac{5}{25}-1,008\right):\frac{4}{7}:\left[\left(3\frac{1}{4}-6\frac{5}{9}\right)\cdot2\frac{2}{17}\right]\)
\(=\left(\frac{1}{5}-\frac{126}{125}\right):\frac{4}{7}:\left[\left(\frac{13}{4}-\frac{59}{9}\right)\cdot\frac{36}{17}\right]\)
\(=\left(\frac{25}{125}-\frac{126}{125}\right):\frac{4}{7}:\left[-\frac{119}{36}\cdot\frac{36}{17}\right]\)
\(=-\frac{101}{125}:\frac{4}{7}:\left(-7\right)=-\frac{101}{125}\cdot\frac{7}{4}\cdot\left(-\frac{1}{7}\right)=\frac{101}{500}\)
b) \(\left(-0,5-\frac{3}{5}\right):\left(-3\right)+\frac{1}{3}-\left(-\frac{1}{6}\right):\left(-2\right)\)
\(=\left(-\frac{1}{2}-\frac{3}{5}\right):\left(-3\right)+\frac{1}{3}-\left(-\frac{1}{6}\right)\cdot\left(-\frac{1}{2}\right)\)
\(=-\frac{11}{10}:\left(-3\right)+\frac{1}{3}-\frac{1}{12}\)
\(=\frac{11}{30}+\frac{1}{3}-\frac{1}{12}=\frac{37}{60}\)
Ta có: \(B=\frac{1}{5^2}+\frac{1}{5^4}+\frac{1}{5^6}+...+\frac{1}{5^{2014}}\)
=> \(25B=1+\frac{1}{5^2}+\frac{1}{5^4}+...+\frac{1}{5^{2012}}\)
=> 25B-B=24B= \(1-\frac{1}{5^{2014}}\)
=> \(B=\frac{1-\frac{1}{5^{2014}}}{24}< \frac{1}{24}\)
=> đpcm