K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2015

B=1/1x4+1/4x3+1/3x8+...+1/7x16+1/16x9+1/9x20

2B=2x(1/4+1/12+1/24+...+1/112+1/144+1/180

2B=2/8+2/24+2/48+...+2/224+2/288+2/360

2B=2/2x4+2/4x6+2/6x8+...+2/14x16+2/16x18+2/18x20

2B=1/2-1/4+1/4-1/6+1/6-1/8+...+1/14-1/16+1/16-1/18+1/18-1/20

2B=1/2-1/20

2B=9/20

B=9/20:2

B=9/40

 

29 tháng 6 2017

\(A=\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+\frac{1}{10.13}+\frac{1}{13.16}+\frac{1}{16.19}\)

\(A=\frac{1}{3}\cdot\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+....+\frac{1}{16}-\frac{1}{19}\right)\)

\(A=\frac{1}{3}\cdot\left(1-\frac{1}{19}\right)\)

\(A=\frac{1}{3}\cdot\frac{18}{19}=\frac{6}{19}\)

\(B=\frac{1}{32}+\frac{1}{96}+\frac{1}{192}+\frac{1}{320}+\frac{1}{480}\)

\(B=\frac{1}{4\cdot8}+\frac{1}{8\cdot12}+\frac{1}{12\cdot16}+\frac{1}{16\cdot20}+\frac{1}{20\cdot24}\)

\(B=\frac{1}{4}\cdot\left(\frac{1}{4}-\frac{1}{8}+\frac{1}{8}-\frac{1}{12}+\frac{1}{12}-\frac{1}{16}+\frac{1}{16}-\frac{1}{20}+\frac{1}{20}-\frac{1}{24}\right)\)

\(B=\frac{1}{4}\cdot\left(\frac{1}{4}-\frac{1}{24}\right)\)

\(B=\frac{1}{4}\cdot\frac{5}{24}=\frac{5}{96}\)

29 tháng 6 2017

\(A=\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+\frac{1}{10.13}+\frac{1}{13.16}+\frac{1}{16.19}\)

\(A=\frac{1}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{16}-\frac{1}{19}\right)\)

\(A=\frac{1}{3}\left(1-\frac{1}{19}\right)\)

\(A=\frac{1}{3}.\frac{18}{19}\)

\(A=\frac{6}{19}\)

\(B=\frac{1}{32}+\frac{1}{96}+\frac{1}{192}+\frac{1}{320}+\frac{1}{480}\)

\(B=\frac{1}{4.8}+\frac{1}{8.12}+\frac{1}{12.16}+\frac{1}{16.20}+\frac{1}{20.24}\)

\(B=\frac{1}{4}\left(\frac{1}{4}-\frac{1}{8}+\frac{1}{8}-\frac{1}{12}+...+\frac{1}{20}-\frac{1}{24}\right)\)

\(B=\frac{1}{2}\left(\frac{1}{4}-\frac{1}{24}\right)\)

\(B=\frac{1}{2}.\frac{5}{24}\)

\(B=\frac{5}{48}\)

28 tháng 6 2017

đây là toán lớp 5 cơ mà

a)A=\(\frac{1}{1x4}\)+\(\frac{1}{4x7}\)+...+\(\frac{1}{16x19}\)

A=\(\frac{1}{3}\)x3x(\(\frac{1}{1.4}\)+\(\frac{1}{4.7}\)+.......+\(\frac{1}{16.19}\)

A=\(\frac{1}{3}\)x(\(\frac{3}{1.4}\)+\(\frac{3}{4.7}\)+............+\(\frac{3}{16.19}\))

A=\(\frac{1}{3}\)x(1-1/4+1/4-1/7+......+1/13-1/16+1/16-1/19)

A=\(\frac{1}{3}\)x(1-\(\frac{1}{19}\))

A=\(\frac{1}{3}\)x\(\frac{18}{19}\)

A=\(\frac{6}{19}\)

28 tháng 6 2017

câu b tương tự tách mẫu ra thôi

5 tháng 7 2017

\(B=2016:\left(\frac{0.4-\frac{2}{9}+\frac{2}{11}}{1.4-\frac{7}{9}+\frac{7}{11}}.\frac{-1\frac{1}{6}+0.875-0.7}{\frac{1}{3}-0.25+\frac{1}{5}}\right)\) 

<=>\(B=2016:\left(\frac{\frac{2}{5}-\frac{2}{9}+\frac{2}{11}}{\frac{7}{5}-\frac{7}{9}+\frac{7}{11}}.\frac{\frac{-7}{6}+\frac{7}{8}-\frac{7}{10}}{\frac{1}{3}-\frac{1}{4}+\frac{1}{5}}\right)\) 

<=>\(B=2016:\left(\frac{2.\left(\frac{1}{5}.\frac{1}{9}.\frac{1}{11}\right)}{5.\left(\frac{1}{5}.\frac{1}{9}.\frac{1}{11}\right)}.\frac{\frac{7}{6}-\frac{7}{8}-\frac{7}{10}}{\frac{2}{6}-\frac{2}{8}-\frac{2}{10}}\right)\) 

<=>\(B=2016:\left(\frac{2}{5}.\frac{7.\left(\frac{1}{6}-\frac{1}{8}-\frac{1}{10}\right)}{2.\left(\frac{1}{6}-\frac{1}{8}-\frac{1}{10}\right)}\right)\) 

<=>\(B=2016:\left(\frac{2}{5}.\frac{7}{2}\right)\) 

<=>\(B=2016:\frac{7}{5}\) 

<=>\(B=2016.\frac{5}{7}\) 

<=>\(B=1440\) 

 Vậy B=1440

k cho mink nha

1 tháng 8 2016

a)

\(A=\left(\frac{1}{9}-\frac{1}{10}\right)-\left(\frac{1}{8}-\frac{1}{9}\right)-....-\left(1-\frac{1}{2}\right)=\frac{1}{9}-\frac{1}{10}-\frac{1}{8}+\frac{1}{9}-....-1+\frac{1}{2}\)

\(A=-\left(\frac{1}{10}+1\right)=-\frac{11}{10}\)

21 tháng 2 2017

a)\(A=\frac{1}{90}-\frac{1}{72}-\frac{1}{56}-\frac{1}{42}-\frac{1}{30}-\frac{1}{20}-\frac{1}{12}-\frac{1}{6}-\frac{1}{2}\\ \Rightarrow A=-\frac{1}{2}-\frac{1}{6}-\frac{1}{12}-\frac{1}{20}-\frac{1}{30}-\frac{1}{42}-\frac{1}{56}-\frac{1}{72}-\frac{1}{90}\\ \Rightarrow A=-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}\right)\)Đặt \(B=\frac{1}{2}+\frac{1}{6}+...+\frac{1}{72}+\frac{1}{90}\)

\(\Rightarrow B=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{8\cdot9}+\frac{1}{9\cdot10}\)

\(\Rightarrow B=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\)

\(\Rightarrow B=1-\frac{1}{10}=\frac{9}{10}\)

Ta có : \(A=-B\)

\(\Rightarrow A=-\frac{9}{10}\)

a, \(\frac{1}{1.4}\)+\(\frac{1}{4.7}\)+......+\(\frac{1}{97.100}\)= |\(\frac{x}{3}\)|

\(\Rightarrow\)\(\frac{1}{3}\) ( \(\frac{3}{1.4}\)+\(\frac{3}{4.7}\)+.......+\(\frac{3}{97.100}\))= |\(\frac{x}{3}\)|

\(\Rightarrow\)\(\frac{1}{3}\) ( 1  - \(\frac{1}{4}\)\(\frac{1}{4}\)-\(\frac{1}{7}\)+......+\(\frac{1}{97}\)-\(\frac{1}{100}\)) = |\(\frac{x}{3}\)|

\(\Rightarrow\)\(\frac{1}{3}\) ( 1-\(\frac{1}{100}\)) = |\(\frac{x}{3}\)|

\(\Rightarrow\)\(\frac{1}{3}\) . \(\frac{99}{100}\) = |\(\frac{x}{3}\)|

\(\Rightarrow\)\(\frac{33}{100}\) = |\(\frac{x}{3}\)|

\(\Rightarrow\)\(\frac{x}{3}\)\(\orbr{\begin{cases}\frac{33}{100}\\\frac{-33}{100}\end{cases}}\)

Với \(\frac{x}{3}\) = \(\frac{33}{100}\)

\(\Rightarrow\)100x= 33.3

 \(\Rightarrow\)100x=99

\(\Rightarrow\)x=\(\frac{99}{100}\)

Với \(\frac{x}{3}\)=\(\frac{-33}{100}\)

\(\Rightarrow\)100x=-33.3

\(\Rightarrow\)100x=-99

\(\Rightarrow\)x=\(\frac{-99}{100}\)

Vậy x=\(\orbr{\begin{cases}\frac{99}{100}\\\frac{-99}{100}\end{cases}}\)

b, \(\frac{4}{1.5}\)\(\frac{4}{5.9}\)+......+ \(\frac{4}{97.101}\)= |\(\frac{5x-4}{101}\)|

\(\Rightarrow\)1-\(\frac{1}{5}\)+\(\frac{1}{5}\)-\(\frac{1}{9}\)+......+\(\frac{1}{97}\)-\(\frac{1}{101}\)= |\(\frac{5x-4}{101}\)|

\(\Rightarrow\)1-\(\frac{1}{101}\)= |\(\frac{5x-4}{101}\)

\(\Rightarrow\) \(\frac{100}{101}\)= |\(\frac{5x-4}{101}\)|

\(\Rightarrow\)\(\frac{5x-4}{101}\) =\(\orbr{\begin{cases}\frac{100}{101}\\\frac{-100}{101}\end{cases}}\)

Với \(\frac{5x-4}{101}\) =\(\frac{100}{101}\)

\(\Rightarrow\)(5x-4).101=100.101

\(\Rightarrow\)505x-404=10100

\(\Rightarrow\)505x=10504

\(\Rightarrow\)x=\(\frac{104}{5}\)

Với \(\frac{5x-4}{101}\)=\(\frac{-100}{101}\)

\(\Rightarrow\)(5x-4). 101=-100.101

\(\Rightarrow\)505x-404=-10100

\(\Rightarrow\)505x=-9696

\(\Rightarrow\)x=\(\frac{-96}{5}\)

Vậy x=\(\orbr{\begin{cases}\frac{104}{5}\\\frac{-96}{5}\end{cases}}\)

7 tháng 9 2016

bạn ơi như là cô giáo cho đề sai rồi kết quả phải là \(\frac{375}{376}\)thì mới giải được

12 tháng 8 2017

Ta có:

\(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{x\left(x+3\right)}=\frac{125}{376}\)

\(\Rightarrow\frac{1}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{x.\left(x+3\right)}\right)=\frac{125}{376}\)

\(\Rightarrow\frac{1}{3}.\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{x}-\frac{1}{x+3}\right)=\frac{125}{376}\)

\(\Rightarrow\frac{1}{1}-\frac{1}{x+3}=\frac{125}{376}:\frac{1}{3}=\frac{375}{376}\)

\(\Rightarrow\frac{1}{x+3}=1-\frac{375}{376}=\frac{1}{376}\Leftrightarrow x+3=376\Leftrightarrow x=373\)

7 tháng 9 2016

\(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{x\left(x+3\right)}=\frac{125}{376}\)

\(3.\left(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{x\left(x+3\right)}\right)=3.\frac{125}{376}\)

\(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{x\left(x+3\right)}=\frac{375}{376}\)

\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{x}-\frac{1}{x+3}=\frac{375}{376}\)

\(1-\frac{1}{x+3}=\frac{375}{376}\)

\(\frac{x+2}{x+3}=\frac{375}{376}\)

=> x + 2 = 375

=> x = 375 - 2

=> x = 373