\(\begin{cases} 1+x^3y^3=19x^3\\y+xy^2=-6x^2\end{cases}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 12 2017

do \(x=0\)\(y=0\) không phải là một nghiệm của hệ nên

HPT\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1+x^3y^3}{x^3}=\dfrac{19x^3}{x^3}\\\dfrac{y+xy^2}{x^2}=-\dfrac{6x^2}{x^2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x^3}+y^3=19\\\dfrac{y}{x^2}+\dfrac{y^2}{x}=-6\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(\dfrac{1}{x}+y\right)^3-\dfrac{3y}{x}\left(\dfrac{1}{x}+y\right)=19\\\dfrac{y}{x}\left(\dfrac{1}{x}+y\right)=-6\end{matrix}\right.\)

Đặt \(\dfrac{1}{x}+y=u\) ; \(\dfrac{y}{x}=v\)

HPT\(\Leftrightarrow\left\{{}\begin{matrix}u^3-3uv=19\\uv=-6\end{matrix}\right.\)

\(\Rightarrow u^3+18=19\Rightarrow u^3=1\)\(\Rightarrow u=1\)

\(\Rightarrow v=-6\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{x}+y=1\\\dfrac{y}{x}=-6\end{matrix}\right.\)

\(\Rightarrow6x^2+x-1=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=-\dfrac{1}{2}\end{matrix}\right.\)

đến đây thì ez rồi

19 tháng 6 2016

ôi trờiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiucche

3 tháng 9 2019

em chưa học đến :)

3 tháng 9 2019

ok em

1 tháng 12 2017

chia cả hai vế của hệ cho x2 khác 0 rồi đặt ẩn phụ

12 tháng 12 2017

đặt \(\left\{{}\begin{matrix}S=X+Y\\P=X.Y\end{matrix}\right.\)

a)\(\left\{{}\begin{matrix}S+P=5\\S^2-P=7\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}P=5-S\\S^2+S-12=0\end{matrix}\right.\)

\(\left\{{}\begin{matrix}P=5-S\\\left[{}\begin{matrix}S=-4\\S=3\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}S=-4\\P=9\end{matrix}\right.\\\left\{{}\begin{matrix}S=3\\P=2\end{matrix}\right.\end{matrix}\right.\)

suy ra tìm đc x và y

b,c tương tự