\(B=\dfrac{1}{\sqrt{2}-\sqrt{3}}-\dfrac{1}{\sqrt{3}-\sqrt{4}}+\dfrac{1}{\sqrt{4}-\sqrt{5}}+...+\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 1 2019

Sửa dấu trừ thành + pk bạn

AH
Akai Haruma
Giáo viên
12 tháng 1 2019

Lời giải:

Sửa đề: \(B=\frac{1}{\sqrt{2}-\sqrt{3}}-\frac{1}{\sqrt{3}-\sqrt{4}}+\frac{1}{\sqrt{4}-\sqrt{5}}-....+\frac{1}{\sqrt{100}-\sqrt{101}}\)

Sử dụng công thức \(a-b=(\sqrt{a}-\sqrt{b})(\sqrt{a}+\sqrt{b})\) với \(a,b>0\) ta có:

\(B=-\frac{1}{\sqrt{3}-\sqrt{2}}+\frac{1}{\sqrt{4}-\sqrt{3}}-\frac{1}{\sqrt{5}-\sqrt{4}}+....-\frac{1}{\sqrt{101}-\sqrt{100}}\)

\(=-\frac{(\sqrt{3}-\sqrt{2})(\sqrt{3}+\sqrt{2})}{\sqrt{3}-\sqrt{2}}+\frac{(\sqrt{4}-\sqrt{3})(\sqrt{4}+\sqrt{3})}{\sqrt{4}-\sqrt{3}}-\frac{(\sqrt{5}-\sqrt{4})(\sqrt{5}+\sqrt{4})}{\sqrt{5}-\sqrt{4}}+....-\frac{(\sqrt{101}-\sqrt{100})(\sqrt{101}+\sqrt{100})}{\sqrt{101}-\sqrt{100}}\)

\(=-(\sqrt{3}+\sqrt{2})+(\sqrt{4}+\sqrt{3})-(\sqrt{5}+\sqrt{4})+...-(\sqrt{101}+\sqrt{100})\)

\(=-\sqrt{101}-\sqrt{2}\)

8 tháng 10 2018

ta có : \(M=\dfrac{1}{\sqrt{2}-\sqrt{3}}-\dfrac{1}{\sqrt{3}-\sqrt{4}}+\dfrac{1}{\sqrt{4}-\sqrt{5}}-...+\dfrac{1}{\sqrt{100}-\sqrt{101}}\)

\(=\dfrac{\sqrt{2}+\sqrt{3}}{-1}-\dfrac{\sqrt{3}+\sqrt{4}}{-1}+\dfrac{\sqrt{4}+\sqrt{5}}{-1}-...+\dfrac{\sqrt{100}+\sqrt{101}}{-1}\)

\(=-\sqrt{2}-\sqrt{3}+\sqrt{3}+\sqrt{4}-\sqrt{4}-\sqrt{5}+...-\sqrt{100}-\sqrt{101}\)

\(=-\sqrt{2}-\sqrt{100}-\sqrt{101}\) (xem kỉ chút là hiểu thôi)

8 tháng 10 2018

Mysterious Person giúp mk nha

17 tháng 10 2018

Rút gọn biểu thức chứa căn bậc hai

4 tháng 10 2018

Bài 1:Với mọi n∈N*,ta có:

\(\dfrac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\dfrac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{\left(n+1\right)^2n-n^2\left(n+1\right)}=\dfrac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)}=\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\)

Do đó :

A=\(\dfrac{1}{\sqrt{1}}-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{99}}-\dfrac{1}{\sqrt{100}}=1-\dfrac{1}{10}=\dfrac{9}{10}\)

Bài 2: 

\(A=\left(3\sqrt{2}-3+4\sqrt{2}+2-4-2\sqrt{2}\right)\cdot\left(2\sqrt{2}+2\right)\)

\(=\left(5\sqrt{2}-5\right)\left(2\sqrt{2}+2\right)\)

=10

10 tháng 7 2017

bạn nên tự nghiên cứu rồi giải đi chứ bạn đưa 1 loạt thế thì ai rảnh mà giải, với lại cứ bài gì không biết chưa chịu suy nghĩ đã hỏi rồi thì tiến bộ sao được, đúng không

2 tháng 7 2018

\(1.A=\left(\dfrac{1}{3-\sqrt{5}}-\dfrac{1}{3+\sqrt{5}}\right).\dfrac{5-\sqrt{5}}{\sqrt{5}-1}=\left(\dfrac{3+\sqrt{5}}{9-5}-\dfrac{3-\sqrt{5}}{9-5}\right).\dfrac{\sqrt{5}\left(\sqrt{5}-1\right)}{\sqrt{5}-1}=\dfrac{2\sqrt{5}}{4}.\sqrt{5}=\dfrac{5}{2}\) \(2.B=\dfrac{1}{1+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+...+\dfrac{1}{\sqrt{99}+\sqrt{100}}=\dfrac{\sqrt{2}-1}{2-1}+\dfrac{\sqrt{3}-\sqrt{2}}{3-2}+...+\dfrac{\sqrt{100}-\sqrt{99}}{100-99}=\sqrt{100}-1\)

\(3.C=\sqrt[3]{7+5\sqrt{2}}-\sqrt[3]{5\sqrt{2}-7}=\sqrt[3]{\left(\sqrt{2}\right)^3+3.2.1+3.\sqrt{2}.1+1}-\sqrt[3]{\left(\sqrt{2}\right)^3-3.2.1+3.\sqrt{2}.1-1}=\sqrt[3]{\left(\sqrt{2}+1\right)^3}-\sqrt[3]{\left(\sqrt{2}-1\right)^3}=\sqrt{2}+1-\left(\sqrt{2}-1\right)=2\) \(4.Sai-đề\) ???

2 tháng 7 2018

Sorry và cám ơn bạn.

4.\(\sqrt[3]{9+4\sqrt{5}}\) + \(\sqrt[3]{9-4\sqrt{5}}\)

16 tháng 7 2017

\(\dfrac{2}{1-\sqrt{2}}-\dfrac{2}{1+\sqrt{2}}\)

\(=\dfrac{2\left(1+\sqrt{2}\right)-2\left(1-\sqrt{2}\right)}{\left(1-\sqrt{2}\right)\left(1+\sqrt{2}\right)}\)

\(=\dfrac{2+2\sqrt{2}-2+2\sqrt{2}}{1-2}=-4\sqrt{2}\)

\(\left(\dfrac{\sqrt{6}-\sqrt{2}}{1-\sqrt{3}}-\dfrac{5}{\sqrt{5}}\right)\left(\sqrt{5}-\sqrt{2}\right)\)

\(=\left[-\dfrac{\sqrt{2}\left(1-\sqrt{3}\right)}{1-\sqrt{3}}-\sqrt{5}\right]\left(\sqrt{5}-\sqrt{2}\right)\)

\(=-\left(\sqrt{5}+\sqrt{2}\right)\left(\sqrt{5}-\sqrt{2}\right)\)

\(=-3\)

\(\dfrac{2}{7+4\sqrt{3}}+\dfrac{2}{7-4\sqrt{3}}\)

\(=\dfrac{2\left(7-4\sqrt{3}\right)+2\left(7+4\sqrt{3}\right)}{\left(7+4\sqrt{3}\right)\left(7-4\sqrt{3}\right)}\)

\(=\dfrac{14-8\sqrt{3}+14+8\sqrt{3}}{49-48}\)

= 28

16 tháng 7 2017

\(\dfrac{2}{\sqrt{5}+1}-\sqrt{\dfrac{2}{3-\sqrt{5}}}\)

\(=\dfrac{2}{\sqrt{5}+1}-\sqrt{\dfrac{4}{6-2\sqrt{5}}}\)

\(=\dfrac{2}{\sqrt{5}+1}-\dfrac{2}{\sqrt{\left(\sqrt{5}-1\right)^2}}\)

\(=\dfrac{2\left(\sqrt{5}-1\right)-2\left(\sqrt{5}+1\right)}{\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)}\)

\(=\dfrac{2\sqrt{5}-2-2\sqrt{5}-2}{5-1}\)

= - 1

\(\dfrac{4}{1-\sqrt{3}}-\dfrac{\sqrt{15}+\sqrt{3}}{1+\sqrt{5}}\)

\(=\dfrac{4\left(1+\sqrt{3}\right)}{1-3}-\dfrac{\sqrt{3}\left(\sqrt{5}+1\right)}{\left(\sqrt{5}+1\right)}\)

\(=-2-2\sqrt{3}-\sqrt{3}=-2-3\sqrt{3}\)

\(\dfrac{\sqrt{2}}{2\sqrt{2}+\sqrt{3+\sqrt{5}}}\)

\(=\dfrac{2}{4+\sqrt{6+2\sqrt{5}}}\) (nhân [căn 2] vào cả tử và mẫu)

\(=\dfrac{2}{4+\sqrt{\left(\sqrt{5}+1\right)^2}}\)

\(=\dfrac{2}{5+\sqrt{5}}=\dfrac{2\left(5-\sqrt{5}\right)}{25-5}=\dfrac{5-\sqrt{5}}{10}\)

18 tháng 6 2017

C = \(\dfrac{2\sqrt{4-\sqrt{5+\sqrt{21+\sqrt{80}}}}}{\sqrt{10}-\sqrt{2}}\)

C = \(\dfrac{2\sqrt{4-\sqrt{5+\sqrt{\left(\sqrt{20}+1\right)^2}}}}{\sqrt{10}-\sqrt{2}}\)

C = \(\dfrac{2\sqrt{4-\sqrt{6+\sqrt{20}}}}{\sqrt{10}-\sqrt{2}}\) = \(\dfrac{2\sqrt{4-\sqrt{\left(\sqrt{5}+1\right)^2}}}{\sqrt{10}-\sqrt{2}}\)

C = \(\dfrac{2\sqrt{3-\sqrt{5}}}{\sqrt{10}-\sqrt{2}}\) = \(\dfrac{2\sqrt{3-\sqrt{5}}\left(\sqrt{10}+\sqrt{2}\right)}{10-2}\)

C = \(\dfrac{2\sqrt{30-10\sqrt{5}}+2\sqrt{6-2\sqrt{5}}}{8}\)

C = \(\dfrac{2\sqrt{\left(5-\sqrt{5}\right)^2}+2\sqrt{\left(\sqrt{5}-1\right)^2}}{8}\)

C = \(\dfrac{2\left(5-\sqrt{5}\right)+2\left(\sqrt{5}-1\right)}{8}\)

C = \(\dfrac{10-2\sqrt{5}+2\sqrt{5}-2}{8}\) = \(\dfrac{8}{8}\) = \(1\)

18 tháng 6 2017

D = \(\sqrt{94-42\sqrt{5}}-\sqrt{94+42\sqrt{5}}\)

D = \(\sqrt{\left(7-3\sqrt{5}\right)^2}-\sqrt{\left(7+3\sqrt{5}\right)^2}\)

D = \(7-3\sqrt{5}-\left(7+3\sqrt{5}\right)\) = \(7-3\sqrt{5}-7-3\sqrt{5}\)

D = \(-6\sqrt{5}\)

A = \(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)

A = \(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}}\)

A = \(\sqrt{\sqrt{5}-\sqrt{6-2\sqrt{5}}}\) = \(\sqrt{\sqrt{5}-\sqrt{\left(\sqrt{5}-1\right)^2}}\)

A = \(\sqrt{\sqrt{5}-\sqrt{5}+1}\) = \(\sqrt{1}=1\)

1: \(=\sqrt{5}-\dfrac{\sqrt{5}}{2}=\dfrac{\sqrt{5}}{2}\)

2: \(=\dfrac{4+2\sqrt{3}+4-2\sqrt{3}}{2}=\dfrac{8}{2}=4\)

4: \(=\dfrac{-3+5\sqrt{3}}{11}+\dfrac{3+5\sqrt{3}}{11}=\dfrac{10\sqrt{3}}{11}\)