Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$ƯCLN(a,b)=ab:BCNN(a,b)=1200:120=10$
Do $ƯCLN(a,b)=10$ nên đặt $a=10x, b=10y$ với $x,y$ là số tự nhiên, $x,y$ nguyên tố cùng nhau.
Có:
$ab=10x.10y=1200$
$\Rightarrow xy=12$.
Do $x,y$ nguyên tố cùng nhau nên $(x,y)=(1,12), (3,4), (4,3), (12,1)$
$\Rightarrow (a,b)=(10,120), (30,40), (40,30), (120,10)$
Ta có : ab = BCNN(a,b) . ƯCLN(a,b)
=> 120 . ƯCLN(a,b) = 1200
=> UCLN(a,b) = 10
Vì UCLN(a,b) = 10 => a = 10m ; b = 10n (m,n thuộc N; ƯCLN(m,n)=1)
Lại có: ab = 1200
=> 10m.10n = 1200
=> 100mn = 1200
=> mn = 12
Vì ƯCLN(m,n) = 1 nên ta có bảng:
m | 1 | 3 | 4 | 12 |
n | 12 | 4 | 3 | 1 |
a | 10 | 30 | 40 | 120 |
b | 120 | 40 | 30 | 10 |
Vậy các cặp (a;b) là (10;120) ; (30;40) ; (40;30) ; (120;10)
=> UCLN(a;b)= ab/BCNN(a;b)=2400/120 = 20
Đặt a = 20q ; b= 20p với (p;q) = 1
a.b= 20q.20p = 2400
=> qp=6
+q=1; p=6=> a=20; b= 120
+q=2;p=3=> a=40;b=60
Vì a; b có vai trò như nhau
=> (a;b) =(20;120) ;(120;20);(40;60);(60;40)
Đặt a=12n
b=12m
UCLN(a;b)=12
Ta có:
12m+12n=120
12.(m+n)=120
m+n =120:12
m+n=10
Vì giá trị của m và n như nhau nên ta giả sử m>n
ta có bảng sau
m 7 3 9 1 a 84 36 108 12
n 3 7 1 9 b 36 84 12 108
Vậy các số a,b cần tìm là:
(108;12);(84;36);(36;84);(12;108)