Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B=(2003+1)x2003:2=2007006
=>B là chẵn
TẠI SAO ĐỀ BÀI LẠI HỎI A ? CẬU GIẢI THÍCH ĐƯỢC KHÔNG ?
\(S=2+2^2+2^3+...+2^{2015}+2^{2016}\)
\(2S=2.\left(2+2^2+2^3+...+2^{2015}+2^{2016}\right)\)
\(2S=2^2+2^3+2^4+...+2^{2016}+2^{2017}\)
\(2S-S=\left(2^2+2^3+2^4+...+2^{2016}+2^{2017}\right)-\left(2+2^2+2^3+...+2^{2015}+2^{2016}\right)\)
\(S=2^{2017}-2\)
1) Ta có \(S=2+2^2+2^3+...+2^{2015}+2^{2016}\)
\(=2^{2016}+2^{2015}+...+2^3+2^2+2\)( đảo lại chỉ để dễ tính thôi bạn )
Suy ra \(2S=2^{2017}+2^{2016}+...+2^4+2^3+2^2\)
Nên \(2S-S=2^{2017}-2\)hay \(S=2^{2017}-2\)
Vậy \(S=2^{2017}-2\)
1,(a,b)+[a,b]=10
Gọi ƯCLN(a,b) là d
BCNN(a,b) là m, ta có
a=dm (m,n)=1
a-dn m>n
=> [a,b]=dmn
Ta thấy (a,b)+[a,b]=10
Mà (a,b)=d;[a,b]=dmn
=> d+dmn=10 => d(mn+1)=10
=> d và mn+1 đều thuộc Ư(10)
Ư(10)={1;2;5;10}
d,mn+1 thuộc {1;2;5;10}
Ta có bảng sau
d | mn+1 | mn | m | n | a | b |
1 | 10 | 9 | 9 | 1 | 9 | 1 |
2 | 5 | 4 | 4 | 1 | 8 | 2 |
5 | 2 | 1 | bỏ | bỏ | bỏ | bỏ |
10 | 1 | 0 | bỏ | bỏ | bỏ | bỏ |
BẠN TỰ KẾT LUẬN NHÉ!
\(A=\left[1+\left(-2\right)\right]+\left[3+\left(-4\right)\right]+....+\left[2013+\left(-2014\right)+2015\right]\)
\(A=\left(-1\right)+\left(-1\right)+....+\left(-1\right)+2015\left(\text{1007 số hạng }\left(-1\right)\right)=1008\)
Bài 2:
a) Ta có: \(\overline{1a3b}\) số này chia hết cho 2 và 5 nên: \(b=0\)
Mà số này lại chia hết cho 3 nên:
\(1+a+3+b=4+a+0=4+a\) ⋮ 3
TH1: \(4+a=6\Rightarrow a=2\)
TH2: \(4+a=9\Rightarrow a=5\)
TH3: \(4+a=12\Rightarrow a=8\)
Vậy: \(\left(a;b\right)=\left(2;0\right);\left(5;0\right);\left(8;0\right)\)
b) Ta có: \(\overline{2a31b}\) chia hết cho 45 nên số đó phải chia hết cho 5 và 9
Mà \(\overline{2a31b}\) chia hết cho 5 nên: \(b\in\left\{0;5\right\}\)
Lại chia hết cho 9 nên: \(2+a+3+1+b=6+a+b\) ⋮ 9
Với b = 0:
\(6+a+0=9\Rightarrow a=3\)
Với b = 5:
\(6+a+5=18\Rightarrow a=7\)
Vậy: \(\left(a;b\right)=\left(3;0\right);\left(7;5\right)\)
Bài 3:
a) \(13\cdot15\cdot17\cdot19+23\cdot26\)
\(=13\cdot\left(15\cdot17\cdot19+23\cdot2\right)\)
Nên tổng chia hết cho 13 tổng là hợp số không phải SNT
b) \(17^{100}-34\)
\(=17\cdot\left(17^{99}-2\right)\)
Nên hiệu chia hết cho 17 hiệu là hợp số không phải SNT
B là chẵn, còn tại sao thì tớ trả lời ở dưới:
Vì tớ tớ cộng vào rồi trừ thì nó ra số chẵn, thì B là số chẵn.