Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(x^2\ge0\) với mọi \(x\)
nên cộng \(1\) vào mỗi vế của bất đẳng thức trên, ta được:
\(x^2+1\ge1\)
Dấu \("="\) xảy ra khi và chỉ khi \(x=0\)
Vậy, bất đẳng thức trên đúng!
a) (-2) + 3 ≥ 2
Ta có: VT = (-2) + 3 = 1
VP = 2
=> VT < VP
Vậy khẳng định (-2) + 3 ≥ 2 là sai
b) -6 ≤ 2.(-3)
Ta có: VT = -6
VP = 2.(-3) = -6
=> VT = VP
Vậy khẳng định -6 ≤ 2.(-3) là đúng
c) 4 + (-8) < 15 + (-8)
Ta có: VT = 4 + (-8) = -4
VP = 15 + (-8) = 7
=> VP > VT
Vậy khẳng định 4 + (-8) < 15 + (-8) là đúng
d) Vì x2 > 0 => x2 + 1 ≥ 0 + 1 => x2 + 1 ≥ 1
Vậy khẳng định x2 + 1 ≥ 1 là đúng
lkp8pimnl
dertkr]tit[ieutt50ge7o]ro9y4esydpyiittjreoyirotyrodg[auetjgeoehy5frtt9u4w8aoi99ar94uq0ywjgtiflhjfhifglcfhgitiuoxkxhodoiuofpjhpxgtktigudoljtiuytiyjtiohjijhtiogfbkgogogoghogh8tkitklktkt-eto0yopppyieih-t[to
(Kí hiệu: VP = vế phải; VT = vế trái)
a) Ta có: (-2) + 3 = 1
Vì 1 < 2 nên (-2) + 3 < 2.
Do đó khẳng định (-2) + 3 ≥ 2 là sai.
b) Ta có: 2.(-3) = -6
⇒ Khẳng định -6 ≤ 2.(-3) là đúng.
c) Ta có: 4 + (-8) = -4
15 + (-8) = 7
Vì -4 < 7 nên 4 + (-8) < 15 + (-8)
Do đó khẳng định c) đúng
d) Với mọi số thực x ta có: x2 ≥ 0
⇒ x2 + 1 ≥ 1
⇒ Khẳng định d) đúng với mọi số thực x.
a) Khẳng định sai; b) Khẳng định sai;
c) Khẳng định đúng; d) Khẳng định đúng.
Đúng, vì VT = 6.( - 1 ) = - 6 < VP = 2.( - 1 ) = - 2.