K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 6 2020

Bài làm:

Ta có: \(A=\frac{3n-6061}{n-2020}=\frac{\left(3n-6060\right)-1}{n-2020}=\frac{3\left(n-2020\right)}{n-2020}-\frac{1}{n-2020}=3-\frac{1}{n-2020}\)

Ta có 3 là 1 số nguyên nên để A là 1 số nguyên

\(\Rightarrow\frac{1}{n-2020}\inℤ\Rightarrow1⋮\left(n-2020\right)\)

\(\Rightarrow n-2020\inƯ\left(1\right)=\left\{-1;1\right\}\)

\(\Rightarrow n\in\left\{2019;2021\right\}\)

Vậy với n = 2019 hoặc n = 2021 thì A có giá trị là 1 số nguyên

Học tốt!!!!

8 tháng 8 2016

Bài 1:

\(\frac{6n-1}{3n+2}=\frac{2\left(3n+2\right)-5}{3n+2}=\frac{2\left(3n+2\right)}{3n+2}-\frac{5}{3n+2}=3-\frac{5}{3n+2}\in Z\)

\(\Rightarrow5⋮3n+2\)

\(\Rightarrow3n+2\inƯ\left(5\right)=\left\{1;-1;5;-5\right\}\)

\(\Rightarrow3n\in\left\{-1;-3;3;-7\right\}\)

Vì \(n\in Z\) suy ra \(n\in\left\{-1;1\right\}\)

Bài 3:

\(\frac{n^2+4n-2}{n+3}=\frac{n\left(n+3\right)+n-2}{n+3}=\frac{n\left(n+3\right)}{n+3}+\frac{n-2}{n+3}=n+\frac{n-2}{n+3}\in Z\)

\(\Rightarrow n-2⋮n+3\)

\(\Rightarrow\frac{n-2}{n+3}=\frac{n+3-5}{n+3}=\frac{n+3}{n+3}-\frac{5}{n+3}=1-\frac{5}{n+3}\in Z\)

\(\Rightarrow5⋮n+3\)

\(\Rightarrow n+3\inƯ\left(5\right)=\left\{1;-1;5;-5\right\}\)

\(\Rightarrow n\in\left\{-2;-4;2;-8\right\}\)

 

 

 

8 tháng 8 2016

bạn ra bình chọn cũng như không

23 tháng 4 2020

B1. Ta có: A= \(\frac{4n-1}{2n+3}+\frac{n}{2n+3}=\frac{4n-1+n}{2n+3}=\frac{5n-1}{2n+3}\)

=> 2A = \(\frac{10n-2}{2n+3}=\frac{5\left(2n+3\right)-17}{2n+3}=5-\frac{17}{2n+3}\)

Để A là số nguyên <=> 2A là số nguyên <=> \(\frac{17}{2n+3}\in Z\)

<=> 17 \(⋮\)2n + 3 <=> 2n + 3 \(\in\)Ư(17) = {1; -1; 17; -17}

Lập bảng:

 2n + 3 1 -1 17 -17
  n -1 -2 7 -10

Vậy ....

23 tháng 4 2020

Bài 2:

Gọi d là ƯCLN (7n-1; 6n-1) (d thuộc N*)

\(\Rightarrow\hept{\begin{cases}7n-1⋮d\\6n-1⋮d\end{cases}\Rightarrow\hept{\begin{cases}6\left(7n-1\right)⋮d\\7\left(6n-1\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}42n-6⋮d\\42n-7⋮d\end{cases}}}\)

=> 42n-7-42n+6 chia hết cho d

=> -1 chia hết cho d

mà d thuộc N* => d=1

=> ƯCLN (7n-1; 6n-1)=1

=> đpcm

\(A=\frac{5}{n-1}+\frac{n-3}{n-1}=\frac{5+n-3}{n-1}=\frac{n-2}{n-1}\)

a) Để A là phân số thì \(n-1\ne0\)

=> \(n\ne1\)

b) ĐK: n khác 1

Để A là 1 số nguyên thì \(n-2⋮n-1\)

\(\Leftrightarrow1⋮n-1\)

\(\Leftrightarrow n-1\inƯ\left(1\right)\)

...

20 tháng 2 2020

a) Để A là phân số thì n-1 \(\ne\)0 => n \(\ne\)1

b) \(\frac{5}{n-1}\)\(\frac{n-3}{n-1}\)\(\frac{5+n-3}{n-1}\)\(\frac{n+2}{n-1}\)\(\frac{n-1+3}{n-1}\)\(\frac{3}{n-1}\)

Để A là số nguyên thì 3 \(⋮\)n-1

=> n-1 \(\in\)Ư(3) = { 1; 3; -1; -3}

=> n \(\in\){ 2; 4; 0; -2}

Vậy...

1 tháng 8 2018

LẠM DỤNG QUÁ NHIỀU

10 tháng 1 2016

Nhớ có lời giải nha các bạn , lm đc mk kết bạn với !!!! (^-^)

10 tháng 1 2016

= tự làm

hoặc

= máy tính

1 tháng 5 2019

\(M=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{99^2}\)

\(\Rightarrow M< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}\)

\(\Rightarrow M< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}\)

\(\Rightarrow M< 1-\frac{1}{99}< 1\)

Dễ thấy M > 0 nên 0 < M < 1

Vậy M không là số tự nhiên.

1 tháng 5 2019

\(S=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\)

\(\Rightarrow S>\frac{1}{100}+\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}\) (50 số hạng \(\frac{1}{100}\))

\(\Rightarrow S>\frac{1}{100}.50=\frac{1}{2}\)

Vậy \(S>\frac{1}{2}\left(đpcm\right)\)