Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 5:
\(\dfrac{40}{x-30}=\dfrac{20}{y-15}=\dfrac{28}{z-21}\\ \Rightarrow\dfrac{x-30}{40}=\dfrac{y-15}{20}=\dfrac{z-21}{28}=k\\ \Rightarrow\dfrac{x}{40}-\dfrac{3}{4}=\dfrac{y}{20}-\dfrac{3}{4}=\dfrac{z}{28}-\dfrac{3}{4}\\ \Rightarrow\dfrac{x}{40}=\dfrac{y}{20}=\dfrac{z}{28}=k\left(đặt.k\right)\\ \Rightarrow x=40k;y=20k;z=28k\)
Mà \(xyz=22400\Rightarrow22400k^3=22400\)
\(\Rightarrow k^3=1\Rightarrow k=1\Rightarrow\left\{{}\begin{matrix}x=40\\y=20\\z=28\end{matrix}\right.\)
Các bạn làm giúp mình mấy bài này 1 tiếng nữa là mình phải nộp rồi (mình sẽ tích cho tất cả các bạn)
a: A=-2/15*25*x^2y*x^2y^4=-10/3*x^4y^5
B=2*(-5/6)*xy^3*x^3y=-5/3*x^4y^4
b: C=A+B*y
=-10/3*x^4y^5-5/3*x^4y^5
=-5x^4y^5
c: Khi x=2 và y=-1 thì C=-5*2^4*(-1)^5=5*16=80
1, \(\dfrac{a+b-c}{c}=\dfrac{a+c-b}{b}=\dfrac{b+c-a}{a}\)
=> \(\dfrac{a+b}{c}-1=\dfrac{a+c}{b}-1=\dfrac{b+c}{a}-1\)
=> \(\dfrac{a+b}{c}=\dfrac{a+c}{b}=\dfrac{b+c}{a}\)
=> \(\dfrac{a+b}{c}=\dfrac{a+c}{b}=\dfrac{b+c}{a}=\dfrac{a+b+a+c+b+c}{a+b+c}=\dfrac{2\left(a+b+c\right)}{a+b+c}=2\)
=> \(M=\dfrac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\dfrac{a+b}{c}\times\dfrac{a+c}{b}\times\dfrac{b+c}{a}=2.2.2=8\)
=> \(M=8\)
Bài 1:
Nếu $a+b+c=0$ thì đkđb thỏa mãn
$M=\frac{(-c)(-a)(-b)}{abc}=\frac{-(abc)}{abc}=-1$
Nếu $a+b+c\neq 0$. Áp dụng TCDTSBN:
$\frac{a+b-c}{c}=\frac{a+c-b}{b}=\frac{b+c-a}{a}=\frac{a+b-c+a+c-b+b+c-a}{c+b+a}=\frac{a+b+c}{a+b+c}=1$
$\Rightarrow a+b-c=c; a+c-b=b; b+c-a=a$
$\Leftrightarrow a+b=2c; a+c=2b; b+c=2a$
$\Rightarrow a=b=c$
$M=\frac{(a+a)(a+a)(a+a)}{aaa}=\frac{8a^3}{a^3}=8$
Bài 2a
Đặt $2x=3y=4z=t$
$\Rightarrow x=\frac{t}{2}; y=\frac{t}{3}; z=\frac{t}{4}$
Khi đó:
$|x+y+3z|=1$
$\Leftrightarrow |\frac{t}{2}+\frac{t}{3}+\frac{3t}{4}|=1$
$\Leftrightarrow |\frac{19}{12}t|=1$
$\Rightarrow t=\pm \frac{12}{19}$
Nếu $t=\frac{12}{19}$ thì:
$x=\frac{t}{2}=\frac{6}{19}; y=\frac{4}{19}; z=\frac{3}{19}$
Nếu $t=-\frac{12}{19}$ thì:
$x=\frac{t}{2}=\frac{-6}{19}; y=\frac{-4}{19}; z=\frac{-3}{19}$
Bài 1:
Với \(a+b+c=0\Leftrightarrow\left\{{}\begin{matrix}a+b=-c\\b+c=-a\\c+a=-b\end{matrix}\right.\Leftrightarrow M=\dfrac{-abc}{abc}=-1\)
Với \(a+b+c\ne0\Leftrightarrow\dfrac{a+b-c}{c}=\dfrac{a+c-b}{b}=\dfrac{b+c-a}{a}=\dfrac{a+b+c}{a+b+c}=1\)
\(\Leftrightarrow\left\{{}\begin{matrix}a+b-c=c\\a+c-b=b\\b+c-a=a\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+b=2c\\b+c=2a\\c+a=2b\end{matrix}\right.\Leftrightarrow M=\dfrac{2a\cdot2b\cdot2c}{abc}=8\)
Bài 2:
\(a,TH_1:x+y+3z=1\\ \Leftrightarrow\dfrac{x}{6}=\dfrac{y}{4}=\dfrac{z}{3}=\dfrac{x+y+3z}{6+4+9}=\dfrac{1}{19}\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{6}{19}\\y=\dfrac{4}{19}\\z=\dfrac{3}{19}\end{matrix}\right.\\ TH_2:x+y+3z=-1\\ \Leftrightarrow\dfrac{x}{6}=\dfrac{y}{4}=\dfrac{z}{3}=\dfrac{x+y+3z}{6+4+9}=\dfrac{-1}{19}\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{6}{19}\\y=-\dfrac{4}{19}\\z=-\dfrac{3}{19}\end{matrix}\right.\)
Bài 2:
\(b,\Leftrightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\Leftrightarrow\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{z^2}{16}=\dfrac{x^2+2y^2-3z^2}{4+18-48}=\dfrac{-650}{-26}=25\\ \Leftrightarrow\left\{{}\begin{matrix}x^2=100\\y^2=225\\z^2=400\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=10\\y=15\\z=20\end{matrix}\right.\)
1. TH1:a+b+c≠0
Áp dụng t/c dtsbn ta có:
\(\dfrac{a+b-c}{c}=\dfrac{a+c-b}{b}=\dfrac{b+c-a}{a}=\dfrac{a+b-c+a+c-b+b+c-a}{a+b+c}=\dfrac{a+b+c}{a+b+c}=1\)
\(\dfrac{a+b-c}{c}=1\Rightarrow a+b-c=c\Rightarrow a+b=2c\\ \dfrac{a+c-b}{b}=1\Rightarrow a+c-b=b\Rightarrow a+c=2b\\ \dfrac{b+c-a}{a}=1\Rightarrow b+c-a=a\Rightarrow b+c=2a\)
\(=\dfrac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\\ =\dfrac{2c.2a.2b}{abc}\\ =\dfrac{8abc}{abc}\\ =8\)
TH2:a+b+c=0
\(\Rightarrow\left\{{}\begin{matrix}a+b=-c\\b+c=-a\\c+a=-b\end{matrix}\right.\)
\(M=\dfrac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\dfrac{-c.-a.-b}{abc}=\dfrac{-abc}{abc}=-1\)
bài 2
1)
/2x-7/+\(\dfrac{1}{2}=1\dfrac{1}{2}\)
/2x-7/+\(\dfrac{1}{2}=\dfrac{3}{2}\)
/2x-7/=1
=> 2x-7=1 hoặc -2x+7 =1
2x=8 hoặc -2x=-6
x=4 hoặc x=3
Bài 1:
1: Ta có: \(A=\left(-1\right)^3\cdot\left(-\dfrac{7}{8}\right)^3\cdot\left(-\dfrac{2}{7}\right)^2\cdot\left(-7\right)\cdot\left(-\dfrac{1}{14}\right)\)
\(=\dfrac{7^3}{8^3}\cdot\dfrac{4}{49}\cdot\dfrac{1}{2}\)
\(=\dfrac{343}{512}\cdot\dfrac{2}{49}\)
\(=\dfrac{7}{256}\)